[1] ABRUSCI V. M., RUET P.:
Non-commutative logic I: the multiplicative fragment. Ann. Pure Appl. Logic 101 (2000), 29-64.
MR 1729743 |
Zbl 0962.03054
[3] BAUDOT R.: Non-commutative logic programming language NoCLog. In: Symposium LICS 2000 (Santa Barbara). Short Presentations.
[4] BIGARD A., KEIMEL K., WOLFENSTEIN S.:
Groupes et Anneaux Réticulés. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
MR 0552653 |
Zbl 0384.06022
[5] CETERCHI R.:
On algebras with implications, categorically equivalent to pseudo-MV algebras. In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharest, 1999, pp. 912-917.
MR 1730094 |
Zbl 0984.06008
[8] CHANG C. C.:
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[9] CHANG C. C.:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
MR 0122718 |
Zbl 0093.01104
[10] CIGNOLI R. O. L., D'OTTAVIANO I. M. L., MUNDICI D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097 |
Zbl 0937.06009
[11] CIGNOLI R., TORRENS A.:
The poset of prime $\ell$-ideals of an abelian $\ell$-group with a strong unit. J. Algebra 184 (1996), 604-614.
MR 1409232
[12] DI NOLA A., GEORGESCU G., SESSA S.:
Closed ideals of MV-algebras. In: Advances in Contemporary Logic and Computer Sciеncе. Contеmp. Math. 235, Amеr. Math. Soc, Providеncе, RI, 1999, pp. 99-112.
MR 1721208 |
Zbl 0937.06010
[13] DVUREČENSKIJ A.:
Pseudo $MV$-algebras are intervals in $\ell$-groups. J. Austral. Math. Soc 72 (2002) (To appеar).
Zbl 1027.06014
[15] DVUREČENSKIJ A., PULMANNOVÁ S.: Nеw Trends in Quantum Structures. Kluwеr Acad. Publ., Dordrеcht-Boston-London, 2000.
[16] GEORGESCU G., IORGULESCU A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras. In: Proc Fourth Intеr. Symp. Econ. Inform., May 6-9, 1999, INFOREC Printing House, Bucharеst, 1999, pp. 961-968.
[17] GEORGESCU G., IORGULESCU A.:
Pseudo-MV algebras. Multiplе-Valued Logic 6 (2001), 95-135.
MR 1817439 |
Zbl 1014.06008
[18] GLASS A. M. W.:
Partially Ordered Groups. World Sciеntific, Singaporе-New Jеrsey-London-Hong Kong, 1999.
MR 1791008 |
Zbl 0933.06010
[19] GOODEARL K. R.:
Partially Ordered Abelian Groups with Interpolation. Math. Survеys Monographs 20, Amer. Math. Soc., Providеncе, RI, 1986.
MR 0845783 |
Zbl 0589.06008
[20] HÁJEK P.:
Metamathematics of Fuzzy Logic. Kluwеr, Amstеrdam, 1998.
Zbl 0937.03030
[21] HORT D., RACHŮNEK J.:
Lex ideals of generalized MV-algebras. In: Discrete Math. Theoret. Comput. Sci. (DTMCS01), Springer, London, 2001, pp. 125 -136.
MR 1934826 |
Zbl 0983.06015
[22] KOPYTOV V. M., MEDVEDEV N. YA.:
The Theory of Lattice Ordered Groups. Kluwеr Acad. Publ., Dordrecht-Boston-London, 1994.
MR 1369091 |
Zbl 0834.06015
[23] LAMBEK J.:
Some lattice models of bilinear logic. Algebra Universalis 34 (1995), 541-550.
MR 1357483 |
Zbl 0840.03044
[24] LAMBEK J.:
Bilinear logic and Grishin algebras. In: Logic at Wгork. Essays Dedicated to the Memory of Helena Rasiowa (E. Orlowska, ed.), Physica-Verlag Comp., Heidelberg, 1999, pp. 604-612.
MR 1720819 |
Zbl 0957.03063
[25] MAIELI R., RUET P.:
Non-commutative logic III: focusing proofs. Prеprint.
Zbl 1072.03035
[26] MUNDICI D.:
Interpretation of AF C* -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173
[27] RACHŮNEK J.: A non-commutative generalгzation of MV-algebras. Czechoslovak Math. J. (To appear).
[28] RАCHŮNEK J.: Prime ideals and polars in generalized MV-algebras. Multiple-Valued Logic (To appear).
[29] RАCHŮNEK J.: Prime spectra of non-commutative generalгzations of MV-algebras. (Submitted).
[30] RUET P.:
Non-commutative logic II: sequent calculus and phrase semantics. Math. Structures Comput. Sci. 10 (2000), 277-312.
MR 1770234
[31] TURUNEN E.:
Mathematics Behind Fuzzy Logic. Physica-Verlag, А Springеr-Vеrlag Comp., Hеidelbеrg-New York, 1999.
MR 1716958 |
Zbl 0940.03029
[32] YETTER D. N.:
Quantales and (non-commutative) linear logic. J. Symbolic Logic 55 (1990), 41-64.
MR 1043543