Previous |  Up |  Next

Article

References:
[1] BOUCHET A.: Genre maximum d'un Δ-graphe. In: Problèmes combinatoires et thèorie des graphes. Colloques Internat. C.N.R.S. 260, C.N.R.S., Paris, 1978, pp. 57-60. MR 0539940
[2] CHARTRAND G., LESNIAK L.: Graphs & Digraphs, 2nd Ed. Wadsworth & Brooks-Cole, 1986. MR 0834583 | Zbl 0666.05001
[3] JAEGER F., XUONG N. H., PAYAN C.: Genre maximal et connectivité d'un graphe. C.R. Acad. Sci. Paris Sér. A 285 (1977), 337-339. Zbl 0369.05027
[4] KHOMENKO N. P., GLUKHOV A. D.: On upper embeddable graphs. (Russian) In: Graph Theory, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1977, pp. 85-89. MR 0531865 | Zbl 0433.05026
[5] KUNDU S.: Bounds on the number of disjoint spanning trees. J. Combin. Theory Ser. B 17 (1974), 199-203. MR 0369117
[6] NEBESKÝ L.: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31(106) (1981), 604-613. MR 0631605 | Zbl 0482.05034
[7] NEBESKÝ L.: On locally quasiconnected graphs and their upper embeddability. Czechoslovak Math. J. 35(110) (1985), 162-166. MR 0779344 | Zbl 0584.05031
[8] ŠKOVIERA M.: The maximum genus of graphs of diameter two. Discrete Math. 87 (1991), 175-180. MR 1091590 | Zbl 0724.05021
[9] XUONG N. H.: How to determine the maximum genus of a graph. J. Combin. Theory Ser. B 26 (1979), 217-225. MR 0532589 | Zbl 0403.05035
Partner of
EuDML logo