Previous |  Up |  Next

Article

References:
[1] ARSCOTT F. M.: Two-parameter eigenvalue problems in differential equations. Proc. London Math. Soc. (3) 14 (1964), 459-470. MR 0165164 | Zbl 0121.31102
[2] DEIMLING K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin, Heidelberg, 1985. MR 0787404 | Zbl 0559.47040
[3] GREGUŠ M.-NEUMAN F.-ARSCOTT F. M.: Three-point boundary value problems in differential equations. J. London Math. Soc. (2) 3 (1971), 429-436. MR 0283282 | Zbl 0226.34010
[4] HARTMAN P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1964. MR 0171038 | Zbl 0125.32102
[5] STANĚK S.: On a class of functional boundary value problems for second-order functional differential equations with parameter. Czechoslovak Math. J. 43(118) (1993), 339-348. MR 1211756 | Zbl 0788.34069
[6] STANĚK S.: On a class of five-point boundary value problems for nonlinear second-order differential eqations depending on the parameter. Acta Math. Hungar. 62 (1993), 253-262. MR 1250906
[7] STANĚK S.: Leray-Schauder degree method in functional boundary value problems depending on the parameter. Math. Nachr. 164 (1993), 333-344. MR 1251473 | Zbl 0805.34053
[8] STANĚK S.: Boundary value problems for one-parameter second-order differential equations. Ann. Math. Sil. 7 (1993), 89-98. MR 1271188 | Zbl 0804.34020
[9] STANĚK S.: On certain five-point boundary value problem for second-order nonlinear differential equations depending on the para meter. Fasc. Math. 25 (1995), 147-154. MR 1339636
Partner of
EuDML logo