Previous |  Up |  Next

Article

References:
[1] BARNETT V. D.: A three-player extension of the gambler's ruin problem. J. Appl. Probab. 1 (1964), 321-334. MR 0171330 | Zbl 0192.25501
[2] BLASI A.: On a random walk between a reflecting and an absorbing barrier. Ann. Probab. 4 (1976), 695-696. MR 0407996 | Zbl 0342.60050
[3] COX D. R.-MILLER H. D.: The Theory of Stochastic Processes. Methuen, London, 1965. MR 0192521 | Zbl 0149.12902
[4] EL-SHEHAWY M. A.: On absorption probabilities for a random walk between two different barriers. Ann. Fac. Sci. Toulouse Math. (5) I (1992), 95-103. MR 1191730 | Zbl 0765.60071
[5] FELLER W.: An Introduction to Probability Theory and Its Applications. Vol. 1. (3rd ed.), Wiley, New York, 1968. MR 0228020
[6] GULATI C. M.-HILL J. M.: A note on an alternative derivation of random walk probabilities. Sankhya Ser. A 43 (1981), 379-383. MR 0665880 | Zbl 0522.60075
[7] KANNAN D.: An Introduction to Stochastic Processes. New York, 1979. MR 0539142 | Zbl 0418.60002
[8] MUNFORD A. G.: A first passage problem in a random walk with a quality control application. J. Roy. Statist. Soc. Ser. B 43 (1981), 142-146. MR 0626758 | Zbl 0477.60082
[9] SRINIVASAN S. K.-MEHATA K. M.: Stochastic Processes. McGraw Hill, New Delhi, 1976.
[10] WEESAKUL B.: The random walk between a reflecting and an absorbing barrier. Ann. Math. Statist. 32 (1961), 765-769. MR 0125641 | Zbl 0109.10903
Partner of
EuDML logo