Previous |  Up |  Next

Article

References:
[1] DVUREČENSKIJ A., RIEČAN B.: On the individual ergodic theorem on a logic. CMUC 21, 2, 1980, 385-391. MR 0580693 | Zbl 0443.28014
[2] PULMANNOVÁ S.: Individual ergodic theorem on a logic. Math. Slovaca 32, 1982, 413-416. MR 0676579 | Zbl 0503.28005
[3] DVUREČENSKIJ A., PULMANNOVÁ S.: Connection between joint distributions and compatibility. Rep. Math. Phys. 19, 1984, 349-359. MR 0745430
[4] GUDDER S. P.: Joint distributions of observables. J. Math. Mech. 18, 1968, 325-335. MR 0232582 | Zbl 0241.60092
[5] PULMANNOVÁ S.: Relative compatibility and joint distributions of obseгvables. Found. Phys. 10, 1980, 641-653. MR 0659345
[6] PULMANNOVÁ S.: Compatibility and paгtial compatibility in quantum logics. Ann. Inst. H. Poincaгé XXXIV 1981, 391-403. MR 0625170
[7] HALMOS P. R.: Intгoduction to the Theory of Hilbert Space and Spectгal Multiplicity. Chelsea Publishing Co, New York 1957.
[8] GLEASON A.: Measures on closed subspaces of a Hilbert space. J. Math. Mech. 6, 1957, 885-894. MR 0096113
[9] GUDDER S. P., MULLIKIN H. C: Measuгe theoгetic conveгgences of obseгvables and opeгatoгs. J. Math. Phys. 14, 1973, 234-242. MR 0334747
[10] VARADARAJAN V. S.: Geometry of Quantum Theory I. van Nostrand, Princeton N. Y. 1968. MR 0471674
[11] LANCE C.: Eгgodic theoгems foг convex sets and opeгator algebгas. Invent. Math. 37, 1976, 201-204.
[12] YEADON F. J.: Ergodic theoгems for semifinite von Neumann algebras I. J. London Math. Soc. 16, 1977, 326-332. MR 0487482
[13] YEADON F. J.: Eгgodic theoгems for semifinite von Neumann algebгas II. Math. Pгoc. Cambг. Phil. Soc. 88, 1980, 135-147.
[14] JAJTE R.: Non-commutative subadditive eгgodic theorem for semifinite von Neumann algebras. to appear.
[15] GUDDER S. P.: Uniqueness and existence pгopeгties of bounded obseгvables. Pac. J. Math. 15, 1966, 81-93. MR 0201146
[16] DVUREČENSKIJ A., PULMANNOVÁ S.: On the sum of obseгvables on a logic. Math. Slovaca З0, 1980, 393-399.
[17] ZIERLER N.: Axioms for nonrelativistic quantum mechanics. Pac. J. Math. 11, 1961, 1161-1169. MR 0140972
Partner of
EuDML logo