[1] DVUREČENSKIJ A., RIEČAN B.:
On the individual ergodic theorem on a logic. CMUC 21, 2, 1980, 385-391.
MR 0580693 |
Zbl 0443.28014
[3] DVUREČENSKIJ A., PULMANNOVÁ S.:
Connection between joint distributions and compatibility. Rep. Math. Phys. 19, 1984, 349-359.
MR 0745430
[5] PULMANNOVÁ S.:
Relative compatibility and joint distributions of obseгvables. Found. Phys. 10, 1980, 641-653.
MR 0659345
[6] PULMANNOVÁ S.:
Compatibility and paгtial compatibility in quantum logics. Ann. Inst. H. Poincaгé XXXIV 1981, 391-403.
MR 0625170
[7] HALMOS P. R.: Intгoduction to the Theory of Hilbert Space and Spectгal Multiplicity. Chelsea Publishing Co, New York 1957.
[8] GLEASON A.:
Measures on closed subspaces of a Hilbert space. J. Math. Mech. 6, 1957, 885-894.
MR 0096113
[9] GUDDER S. P., MULLIKIN H. C:
Measuгe theoгetic conveгgences of obseгvables and opeгatoгs. J. Math. Phys. 14, 1973, 234-242.
MR 0334747
[10] VARADARAJAN V. S.:
Geometry of Quantum Theory I. van Nostrand, Princeton N. Y. 1968.
MR 0471674
[11] LANCE C.: Eгgodic theoгems foг convex sets and opeгator algebгas. Invent. Math. 37, 1976, 201-204.
[12] YEADON F. J.:
Ergodic theoгems for semifinite von Neumann algebras I. J. London Math. Soc. 16, 1977, 326-332.
MR 0487482
[13] YEADON F. J.: Eгgodic theoгems for semifinite von Neumann algebгas II. Math. Pгoc. Cambг. Phil. Soc. 88, 1980, 135-147.
[14] JAJTE R.: Non-commutative subadditive eгgodic theorem for semifinite von Neumann algebras. to appear.
[15] GUDDER S. P.:
Uniqueness and existence pгopeгties of bounded obseгvables. Pac. J. Math. 15, 1966, 81-93.
MR 0201146
[16] DVUREČENSKIJ A., PULMANNOVÁ S.: On the sum of obseгvables on a logic. Math. Slovaca З0, 1980, 393-399.
[17] ZIERLER N.:
Axioms for nonrelativistic quantum mechanics. Pac. J. Math. 11, 1961, 1161-1169.
MR 0140972