Previous |  Up |  Next

Article

References:
[1] BHANDARI D.-PAL N. R.: Some new information measures for fuzzy sets. Inform. Sci. 67 (1993), 204-228. MR 1195247 | Zbl 0763.94030
[2] BOEKEE D. E.-LUBBE J. C. A.: The $R$-norm information measures. Inform. and Control 45 (1980), 136-155. MR 0584829
[3] DELUCA A.-TERMINI S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1971), 301-312.
[4] HARVDA J. H.-CHARVAT F.: Quantification method of classification processes-concept of $\alpha$-entropy. Kybernetika 3 (1967), 30-35. MR 0209067
[5] KAPUR J. N.: Measures of Fuzzy Information. Mathematical Sciences Trust Society, New Delhi. MR 1479891
[6] KAPUR J. N.: Four families of measures of entropy. Indian J. Pure Appl. Math. 17 (1986), 429-449. MR 0840750 | Zbl 0589.62007
[7] KAUFMAN A.: Fuzzy Subsets. Fundamental Theoretical Elements 3, Academic Press, New York, 1980.
[8] KULLBACK S.: Information Theory and Sufficiency. Willey and Sons, New Delhi, 1959. MR 0103557
[9] KULLBACK S.-LEIBLER R. A.: On information and sufficiency. Ann. Math. Stat. 22 (1951), 79-86. MR 0039968 | Zbl 0042.38403
[10] PAL N. R.-PAL S. K.: Object background segmentation using new definition of entropy. Proc. IEEE 136 (1989), 284-295.
[11] RENYI A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 1961, pp. 547-561. MR 0132570 | Zbl 0106.33001
[12] SHARMA B. D.-TANEJA I. J.: Entropy of type $(\alpha,\beta)$ and other generalized measures of information theory. Mathematika 22 (1995), 205-215. MR 0398670
[13] SHARMA B. D.-MITTAL D. P.: New non-additive measures of entropy for discrete probability distributions. J. Math. Sci (Calcutta) 10 (1975), 28-40. MR 0539493
[14] SHANNON C. E. : The mathematical theory of communication. Bell Syst. Tech. Journal 27 (1948), 423-467. MR 0026286
[15] ZADEH L. A.: Fuzzy sets. Inform. and Control 8 (1966), 94-102. Zbl 0263.02028
Partner of
EuDML logo