[1] BHANDARI D.-PAL N. R.:
Some new information measures for fuzzy sets. Inform. Sci. 67 (1993), 204-228.
MR 1195247 |
Zbl 0763.94030
[2] BOEKEE D. E.-LUBBE J. C. A.:
The $R$-norm information measures. Inform. and Control 45 (1980), 136-155.
MR 0584829
[3] DELUCA A.-TERMINI S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1971), 301-312.
[4] HARVDA J. H.-CHARVAT F.:
Quantification method of classification processes-concept of $\alpha$-entropy. Kybernetika 3 (1967), 30-35.
MR 0209067
[5] KAPUR J. N.:
Measures of Fuzzy Information. Mathematical Sciences Trust Society, New Delhi.
MR 1479891
[6] KAPUR J. N.:
Four families of measures of entropy. Indian J. Pure Appl. Math. 17 (1986), 429-449.
MR 0840750 |
Zbl 0589.62007
[7] KAUFMAN A.: Fuzzy Subsets. Fundamental Theoretical Elements 3, Academic Press, New York, 1980.
[8] KULLBACK S.:
Information Theory and Sufficiency. Willey and Sons, New Delhi, 1959.
MR 0103557
[9] KULLBACK S.-LEIBLER R. A.:
On information and sufficiency. Ann. Math. Stat. 22 (1951), 79-86.
MR 0039968 |
Zbl 0042.38403
[10] PAL N. R.-PAL S. K.: Object background segmentation using new definition of entropy. Proc. IEEE 136 (1989), 284-295.
[11] RENYI A.:
On measures of entropy and information. In: Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 1961, pp. 547-561.
MR 0132570 |
Zbl 0106.33001
[12] SHARMA B. D.-TANEJA I. J.:
Entropy of type $(\alpha,\beta)$ and other generalized measures of information theory. Mathematika 22 (1995), 205-215.
MR 0398670
[13] SHARMA B. D.-MITTAL D. P.:
New non-additive measures of entropy for discrete probability distributions. J. Math. Sci (Calcutta) 10 (1975), 28-40.
MR 0539493
[14] SHANNON C. E. :
The mathematical theory of communication. Bell Syst. Tech. Journal 27 (1948), 423-467.
MR 0026286
[15] ZADEH L. A.:
Fuzzy sets. Inform. and Control 8 (1966), 94-102.
Zbl 0263.02028