[1] BANNAI E., ITO T.:
On finite Moore graphs. J. Fac. Sci. Univ. Tokyo Sect. I-A 20, 1973. 191-208.
MR 0323615 |
Zbl 0275.05121
[4] BOSE R. C.:
Stгongly regular graphs, partial geometries and paгtially balanced designs. Pacific J. Math., 13, 1963, 389-419.
MR 0157909
[6] ERDÖS P., RÉNYI A., SÓS V. T.: On a problem of gгaph theoгy. Studia Sci. Math. Hunger, 1, 1966, 215-236.
[7] ERDÖS P.:
Graph theory and probability. Canad. J. Math., 11, 1959, 34-38.
MR 0102081
[8] HEDRLÍN Z., PULTR A.:
Symmetric гelations (undiгected graphs) with given semigгoups. Monatsh. Math., 69, 1965, 318-322.
MR 0188082
[9] HELL P., NEŠETŘIL J.:
Graphs and k-societes. Canad. Math. Bull., 13, 1970, 375-381.
MR 0276124
[10] HELL P., NEŠETŘIL J.:
On edge sets of rigid and corigid graphs to appear in Math. Nachг.
MR 0371739
[11] HOFFMAN A. J., SINGLETON R. R.:
On Mooгe gгaphs with diameters 2 and 3. IBM J. Res. Develop., 4, 1960, 497-504.
MR 0140437
[12] NEŠETŘIL J.:
On symmetric and antisymmetric relations. Monath. Math., 76, 1972, 323-327.
MR 0318038
[13] VOPĚNKA P., PULTR A., HEDRLÍN Z.:
A rigid relation exists on any set. Comment. Math. Univ. Carolinae, 6, 1965, 149-155.
MR 0183647