[1] CHAJDA I.-EIGENTHALER G.-LANGER H.:
Congruence Classes in Universal Algebra. Heldermann Verlag, Lemgo, 2003.
MR 1985832 |
Zbl 1014.08001
[2] CHAJDA I.:
Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carolin. 44 (2003), 577-585.
MR 2062874 |
Zbl 1101.06003
[3] CHAJDA I.-HALAŠ R.-KÜHR J.:
Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19-33.
MR 2160352 |
Zbl 1099.06006
[4] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097 |
Zbl 0937.06009
[5] DVUREČENSKIJ A.:
Pseudo MV-algebras are intervals in t-groups. J. Aust. Math. Soc. 72 (2002), 427-445.
MR 1902211
[6] DVUREČENSKIJ A.:
On pseudo MV-algebras. Soft Comput. 5 (2001), 347-354.
Zbl 1081.06010
[8] MUNDICI D.:
Interpretation of AF C* -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173
[9] RACHŮNEK J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
MR 1905434 |
Zbl 1012.06012
[10] RACHŮNEK J.:
Prime spectra of non-commutative generalizations of MV-algebras. Algebra Universalis 48 (2002), 151-169.
MR 1929902 |
Zbl 1058.06015