Previous |  Up |  Next

Article

References:
[1] BIELAK H.: Minimal realizations of graphs as central subgraphs. In: Gгaphs, Hypeгgraphs & Matroids (Źagań, 1985), Higher College Engnrg., Zielona Goгa, 1985, pp. 13-24. MR 0848959 | Zbl 0601.05041
[2] BUCKLEY F., HARARY F.: Distance in Graphs. Addison-Wesley, Redwood City, 1990. Zbl 0688.05017
[3] BUCKLEY F., MILLER Z., SLATER P. J.: On graphs containing a given graph as a center. J. Graph Theory 5 (1981), 427-434. MR 0635706
[4] CHEN Z. B.: On the existence of graphs with A(H) = 3. (Chinese), J. Math. (PRC) 4 (1984), 267-271. MR 0768292
[5] CHESTON G. A., FARLEY A., HEDETNIEMI S. T., PROSKUROWSKI A.: Centering a spanning tree of a biconnected graph. Inform Process. Lett. 32 (1989), 247-250. MR 1017541 | Zbl 0677.68075
[6] HEDETNIEMI S. M., HEDETNIEMI S. T.: Centers of recursive graphs. Technical Report CS-TR-79-11, Dept. Comp. Sc, University of Oregon (1979).
[7] HEDETNIEMI S. M., HEDETNIEMI S. T., SLATER P. J.: Centers and medians of Cn-trees. Utilitas Math. 21 (1982), 225-234. MR 0668852
[8] LASKAR R., SHIER D.: On powers and centers of chordal graphs. Discгete Appl. Math. 6 (1983), 139-147. MR 0707022 | Zbl 0521.05064
[9] NIEMINEN J.: The center problem in the product of graphs. In: Recent Studies in Gгaph Theory, Wishwa, Gulbarga, 1989, pp. 201-205. MR 1041311
[10] PROSKUROWSKI A.: Centers of maximal outerplanar graphs. J. Gгaph Theoгy 4 (1980), 75-79. MR 0558454 | Zbl 0401.05065
[11] SIMIC S. K: A note on the graph equation C(L(G)) = L(C(G)). Publ. Inst. Math. (Beograd) (N.S.) 44(58) (1988), 35-40. MR 0995406 | Zbl 0665.05049
Partner of
EuDML logo