Previous |  Up |  Next

Article

References:
[1] CONWAY J. B.: A Course in Functional Analysis. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1985. MR 0768926 | Zbl 0558.46001
[2] DUDLEY R. M.: Convergence of Baire measures. Studia Math. 27 (1966), 251-268. MR 0200710 | Zbl 0147.31301
[3] FRIEDMAN N. A.: Introduction to Ergodic Theory. Van Nostrand, New York-Cincinnati-Toronto-London-Melbourne, 1970. MR 0435350 | Zbl 0212.40004
[4] KELLEY J. L.: General Topology. D. Van Nostrand, New York, 1955. MR 0070144 | Zbl 0066.16604
[5] KOLMOGOROV A. N., FOMIN S. V.: Introduction to Theory of Functions and Functional Analysis. (Russian), Nauka, Moscow, 1981. MR 0630899
[6] KORNFEL'D I. P., SINAI J. G., FOMIN S. V.: Ergodic Theory. (Russian), Nauka, Moscow, 1980. MR 0610981
[7] KOROLJUK V. S., TURBIN A. F.: Mathematical Elements of Phase Amplification in Complex Systems. (Russian), Naukova Dumka, Kiev, 1978. MR 0515139
[8] KOVALENKO I. N., KUZNECOV N. JU., SHURENKOV V. M.: Random Processes. (Russian), Naukova Dumka, Kiev, 1983. MR 0751235
[9] LOTZ H. P.: Positive linear operators on Lp and the Doeblin condition. In: Aspects of Positivity in Functional Analysis. Elsevier Science Publishers B.V., North Holand, 1986, pp. 137-156. MR 0859722
[10] MEYN S. P.: Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function. SIAM J. Control Optim. 27 (1989), 1409-1439. MR 1022436 | Zbl 0681.60067
[11] MOHAPL J.: The Radon measures as functionals on Lip schitz functions. Czechoslovak Math. J. 41 (1991), 446-453. MR 1117798
[12] MOHAPL J.: On weakly convergent nets in spaces of non-negative measures. Czechoslovak Math. J. 40 (1990), 408-421. MR 1065020 | Zbl 0727.28011
[13] NUMMELIN E.: General Irreducible Markov Chains and Non Negative Operators. Cambridge University Press, Cambridge, 1984. MR 0776608 | Zbl 0551.60066
[14] PACHL J. K.: Measures as functionals on uniformly continuous functions. Pacific J. Math. 82 (1979), 515-521. MR 0551709 | Zbl 0419.28006
[15] PARRY W.: Topics in Ergodic Theory. Cambridge University Press, Cambridge, 1980. MR 0614142
[16] PARTHASARATHY K. R.: Introduction to Probability and Measure. Springer-Verlag, New York-Heidelberg-Berlin, 1978. MR 0651013
[17] SHURENKOV V. M.: Ergodic Markov Processes. (Russian), Nauka, Moscow, 1989. MR 1087782 | Zbl 0687.60065
[18] VACHANIJA N. N., TARIELADZE V. L., ČOBANJAN S. A.: Probability Distributions in Banach Spaces. (Russian), Nauka, Moscow, 1985. MR 0787803
[19] VARADARJAN V. S.: Measures on topological spaces. (Russian), Mat. Sb. 55 (1961), 35-100.
[20] YOSIDA K.: Functional Analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Zbl 0126.11504
[21] ŽDANOK T. A.: Fixed point theorem for measurable field of operators with an application to random differential equation. In: Fifth Japan-USSR Symposium Proceedengs 1986, Springer-Verlag, New York-Heidelberg-Berlin, 1988. MR 0936033
Partner of
EuDML logo