Previous |  Up |  Next

Article

References:
[BT] BESICOVITCH A. S.-TAYLOR S. J. : On the complementary intervals of a linear closed sets of zero Lebesgue measure. J. London Math. Soc. 29 (1954), 449-459. MR 0064849
[H] HAWKES J.: Hausdorff measure, entropy and the independents of small sets. Proc. London Math. Soc. (3) 28 (1974), 700-724. MR 0352412
[KA] KOCAK S.-AZCAN H.: Fractal dimensions of some sequences of real numbers. Doga Mat. 17 (1993), 298-304. MR 1255026 | Zbl 0857.40002
[KT] KOLMOGOROV A. N.-TIKHOMIROV V. M.: $\epsilon$-entropy and $\epsilon$ -capacity of sets in functional spaces. Uspekhi Mat. Nauk 14 (1959), 3 86 (Russian); In: Amer. Math. Soc. Transl. Ser. 2 Vol. 17, Amer. Math. Soc, Providence, RI, 1961, pp. 277-364. MR 0112032
[MZ1] MIŠÍK L.-ŽÁČIK T.: On some properties of the metric dimension. Comment. Math. Univ. Carolin. 31 (1990), 781-791. MR 1091376 | Zbl 0717.54017
[MZ2] MIŠÍK L.-ŽÁČIK T.: A formula for calculation of metric dimension of converging sequences. Comment. Math. Univ. Carolin. 40 (1999), 393-401. MR 1732660 | Zbl 0976.54035
[PS] PONTRYAGIN L. S.-SNIRELMAN L. G.: Sur une propriete metrique de la dimension. Ann. of Math. (2) 33 (1932), 156-162 (Appendix to the Russian translation of Dimension Theory by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit., Moscow, 1948). MR 1503042 | Zbl 0003.33101
Partner of
EuDML logo