Previous |  Up |  Next

Article

References:
[1] CHAJDA L.-CZÉDLI G.- HORVÁTH E. K.: Shifting lemma and shifting lattice identities. Algebra Universalis (To appear). MR 2026828
[2] CHAJDA I.-GLAZEK K.: A Basic Course on Algebra. Technical University Press, Zielona Góra, Poland, 2000. MR 1783394
[3] CHAJDA I.-HORVÁTH E. K.: A triangular scheme for congruence distributivity. Acta Sci. Math. (Szeged) 68 (2002), 29-35. MR 1916565 | Zbl 0997.08001
[4] CZÉDLI G.-HORVÁTH E. K.: Congruence distributivity and modularity permit tolerances. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 41 (2002), 39-42. MR 1967338 | Zbl 1043.08002
[5] CZÉDLI G.-HORVÁTH E. K.: All congruence lattice identities implying modularity have Mal'tsev conditions. Algebra Universalis (To appear). MR 2026828 | Zbl 1091.08007
[6] DAY A.: A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173. MR 0248063 | Zbl 0181.02302
[7] DUDA J.: The Upright Principle for congruence distributive varieties. Abstract of a seminar lecture presented in Brno, March, 2000.
[8] DUDA J.: The Triangular Principle for congruence distributive varieties. Abstract of a seminar lecture presented in Brno, March, 2000.
[9] FRASER G. A.-HORN A.: Congruence relations in direct products. Proc Amer. Math. Soc 26 (1970), 390-394. MR 0265258 | Zbl 0241.08004
[10] FREESE R.-McKENZIE R.: Commutator Theory for Congruence Modular Varieties. Cambridge Univ. Press, Cambridge, 1987. MR 0909290 | Zbl 0636.08001
[11] GUMM H. P.: Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc 45 no. 286 (1983), viii+79. MR 0714648 | Zbl 0547.08006
[12] GUMM H. P.: Congruence modularity is permutability composed with distributivity. Arch. Math. (Basel) 36 (1981), 569-576. MR 0629294 | Zbl 0465.08005
[13] JONSSON B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121. MR 0237402 | Zbl 0167.28401
Partner of
EuDML logo