[1] CHAJDA L.-CZÉDLI G.- HORVÁTH E. K.:
Shifting lemma and shifting lattice identities. Algebra Universalis (To appear).
MR 2026828
[2] CHAJDA I.-GLAZEK K.:
A Basic Course on Algebra. Technical University Press, Zielona Góra, Poland, 2000.
MR 1783394
[3] CHAJDA I.-HORVÁTH E. K.:
A triangular scheme for congruence distributivity. Acta Sci. Math. (Szeged) 68 (2002), 29-35.
MR 1916565 |
Zbl 0997.08001
[4] CZÉDLI G.-HORVÁTH E. K.:
Congruence distributivity and modularity permit tolerances. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 41 (2002), 39-42.
MR 1967338 |
Zbl 1043.08002
[5] CZÉDLI G.-HORVÁTH E. K.:
All congruence lattice identities implying modularity have Mal'tsev conditions. Algebra Universalis (To appear).
MR 2026828 |
Zbl 1091.08007
[6] DAY A.:
A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173.
MR 0248063 |
Zbl 0181.02302
[7] DUDA J.: The Upright Principle for congruence distributive varieties. Abstract of a seminar lecture presented in Brno, March, 2000.
[8] DUDA J.: The Triangular Principle for congruence distributive varieties. Abstract of a seminar lecture presented in Brno, March, 2000.
[9] FRASER G. A.-HORN A.:
Congruence relations in direct products. Proc Amer. Math. Soc 26 (1970), 390-394.
MR 0265258 |
Zbl 0241.08004
[10] FREESE R.-McKENZIE R.:
Commutator Theory for Congruence Modular Varieties. Cambridge Univ. Press, Cambridge, 1987.
MR 0909290 |
Zbl 0636.08001
[11] GUMM H. P.:
Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc 45 no. 286 (1983), viii+79.
MR 0714648 |
Zbl 0547.08006
[12] GUMM H. P.:
Congruence modularity is permutability composed with distributivity. Arch. Math. (Basel) 36 (1981), 569-576.
MR 0629294 |
Zbl 0465.08005
[13] JONSSON B.:
Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121.
MR 0237402 |
Zbl 0167.28401