Previous |  Up |  Next

Article

References:
[1] ENRIQUEZ B.: Quantization of Lie bialgebras and shuffle algebras of Lie algebras. Selecta Math. (N.S.) 7 (2001), 321-407. MR 1868300 | Zbl 1009.17010
[2] ETINGOF P.-KAZHDAN D.: Quantization of Lie bialgebras I. Selecta Math. (N.S.) 2 (1996), 1-41. MR 1403351 | Zbl 0863.17008
[3] ETINGOF P.-SCHIFFMAN O.: Lectures on Quantum Groups. International Press, Cambridge, MA, 1998. MR 1698405 | Zbl 1105.17300
[4] HUDSON R. L.: Calculus in enveloping algebras. J. London Math. Soc. (2) 65 (2001), 361-380. MR 1883188 | Zbl 1010.17009
[5] HUDSON R. L.-PARTHASARATHY K. R.: Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys. 93 (1984), 301-323. MR 0745686 | Zbl 0546.60058
[6] HUDSON R. L.-PULMANNOVÁ S.: Chaotic expansions of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus. Proc. London Math. Soc. (3) 77 (1998), 462-480. MR 1635169
[7] HUDSON R. L.-PULMANNOVÁ S.: Double productintegrals and Enriquex quantisation of Lie bialgebras I: The quasitriangularity relations. J. Math. Phys. (To appear); II: The quantum Yang-Baxter equation. Nottingham Trent Preprint 2003.
[8] PARTHASARATHY K. R.: An Introduction to Quantum Stochastic Calculus. Monogr. Math. 85, Birkhauser, Basel, 1992. MR 1164866 | Zbl 0751.60046
[9] WORONOWICZ S. L.: Differential calculus on compact matrix pseudogroups. Comm. Math. Phys. 122 (1989), 125-170. MR 0994499 | Zbl 0751.58042
Partner of
EuDML logo