Previous |  Up |  Next

Article

References:
[1] CIGNOLI R.-D'OTTAVIANO I. M. I.-MUNDICI D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097 | Zbl 0937.06009
[2] GLUSHANKOF D.: Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 44 (1994), 725-739.
[3] HOLLAND, CH.: Intrinsic metrics for lattice ordered groups. Algebra Universalis 19 (1984), 142-150. MR 0758313 | Zbl 0557.06011
[4] JAKUBÍK J.: Isometries of lattice ordered groups. Czechoslovak Math. J. 30 (1980), 142-152. MR 0565917 | Zbl 0436.06013
[5] JAKUBÍK J.: Sequential convergences on MV-algebras. Czechoslovak Math. J. 45 (1995), 709-726. MR 1354928 | Zbl 0845.06009
[6] JAKUBÍK J.: Subdirect product decompositions of MV-algebras. Czechoslovak Math. J. 49 (1999), 163-173. MR 1676813 | Zbl 0951.06012
[7] JAKUBÍK J.: On intervals and isometries of MV-algebras. Czechoslovak Math. J. 52 (2002), 651-663. MR 1923269 | Zbl 1012.06013
[8] JASEM M.: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119-136. MR 1274597 | Zbl 0782.06012
[9] MUNDICI D.: Interpretation of $AFC^\ast$ -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173
[10] POWELL W. B.: On isometries in abelian lattice ordered groups. J. Indian Math. Soc. 46 (1982), 189-194. MR 0878072
[11] RACHŮNEK J.: Izometries in ordered groups. Czechoslovak Math. J. 34 (1984), 334-341. MR 0743498
[12] SWAMY K. L.: Izometries in autometrized lattice ordered groups. Algebra Universalis 8 (1977), 58-64. MR 0463074
Partner of
EuDML logo