[1] FELLER W.: An Introduction to Probability Theory and its Applications II. (2nd ed.), John Wiley & Sons Inc, New York, 1971.
[2] GALAMBOS J.-INDLEKOFER K. H., KATAI I.:
A renewal theorem for random walks in multidimensional time. Trans. Amer. Math. Soc. 300 (1987), 759-769.
MR 0876477 |
Zbl 0622.60101
[3] GALAMBOS J.-KATAI I.:
A note on random walks in multidimensional time. Math. Proc. Cambridge Philos. Soc 99 (1986), 163-170.
MR 0809511 |
Zbl 0562.60094
[4] GALAMBOS J.-KATAI I.:
Some remarks on random walks in multidimensional time. In: Proc 5th Pannonian Sympos. on Math. Statistics, Visegrad, Hungary 1985, (J. Mogyorodi et al., eds.), Reidel, Dordrecht, 1986, pp. 65-74.
MR 0956685
[5] GUT A.:
Stopped Random Walks. Limit Theorems and Applications, Springer-Verlag, New York, 1988.
MR 0916870 |
Zbl 0634.60061
[6] HARDY G. H.-WRIGHT E. M.:
An Introduction to the Theory of Numbers. (4th ed.), Oxford University Press, Oxford, 1960.
Zbl 0086.25803
[7] MAEJIMA M.-MORI T.:
Some renewal theorems for random walks in multidimensional time. Math. Proc. Cambridge Philos. Soc. 95 (1984), 149-154.
MR 0727089 |
Zbl 0535.60079
[8] NEY P.-WAINGER S.:
The renewal theorem for a random walk in two dimensional time. Studia Math. 46 (1972), 71-85.
MR 0322978 |
Zbl 0239.60077
[9] SENETA E.:
Regularly Varying Functions. Lecture Notes in Math. 508, Springer-Verlag, Berlin, 1976.
MR 0453936 |
Zbl 0324.26002
[10] TITCHMARSH E. C.:
The Theory of the Riemann Zeta Function. (2nd ed.), Clarendon Press, Oxford, 1986.
MR 0882550 |
Zbl 0601.10026