Previous |  Up |  Next

Article

References:
[1] ANDERSON M.-FEIL T.: Lattice-Ordered Groups. Reidel, Dordrecht, 1988. MR 0937703 | Zbl 0636.06008
[2] BIGARD A.-CONRAD P.-WOLFENSTEIN S.: Compactly generated lattice-ordered groups. Math. Z. 107 (1968), 201-211. MR 0236083
[3] CONRAD P.-MARTINEZ J.: Very large subgroups of lattice-ordered groups. Comm. Algebra 18 (1990), 2063-2098. MR 1063126
[4] CONRAD P.-MARTINEZ J.: Complemented lattice-ordered groups. Indag. Math. (N.S.) 1 (1990), 281-298. MR 1075880 | Zbl 0735.06006
[5] DI NOLA A.-GEORGESCU G.-SESSA S.: Closed ideals of MV-algebras. In: Advances in Contemporary Logic and Computer Science (W. A. Carnielli,I. M. L. D'Ottaviano, eds.), Contemp. Math. 235, Amer. Math. Soc, Providence, RI,1999, pp. 99-111. MR 1721208 | Zbl 0937.06010
[6] KEIMEL K.: A unified theory of minimal prime ideals. Acta Math. Acad. Sci. Hungaricae 23 (1972), 51-69. MR 0318037 | Zbl 0265.06016
[7] MARTINEZ J.: Archimedean lattices. Algebra Universalis 3 (1973), 247-260. MR 0349503 | Zbl 0317.06004
[8] SNODGRASS J. T.-TSINAKIS, C : Finite-valued algebraic lattices. Algebra Univeгsalis 30 (1993), 311-319. MR 1225870 | Zbl 0806.06011
[9] SNODGRASS J. T.- TSINAKIS, C : The finite basis theorem for relatively normal lattices. Algebra Universalis 33 (1995), 40-67. MR 1303631
Partner of
EuDML logo