[1] BROWDER F. E., PETRYSHYN V. W.:
The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Math. Soc. 72 (1966), 571-576.
MR 0190745 |
Zbl 0138.08202
[2] BYNUM W. L.:
Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427-436.
MR 0590555 |
Zbl 0442.46018
[3] CASINI E., MALUTA E.:
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. 9 (1985), 103-108.
MR 0776365 |
Zbl 0526.47034
[4] DANEŠ J.:
On densifying and related mappings and their applications in nonlinear functional analysis. In: Theory of Nonlinear Operators. Proc. Summer School, October 1972, GDR, Akademie-Verlag, Berlin, 1974, pp. 15-56.
MR 0361946
[5] GOEBEL K., KIRK W. A.:
Topics in Metric Fixed Point Theory. Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990.
MR 1074005 |
Zbl 0708.47031
[6] GÓRNICKI J.:
Fixed point theorems for asymptotically regular mappings in Lp spaces. Nonlinear Anal. 17 (1991), 153-159.
MR 1118074
[7] KRÜPPEL M.:
Ein Fixpunktsatz für asymptotisch reguläre Operatoren im Hilbert-Raum. Wiss. Z. Pädagog. Hochsch. "Liselotte Herrmann" Güstrow Math.-Natur. Fak. 27 (1989), 247-251.
MR 1086619 |
Zbl 0721.47040
[8] LIM T. C.:
On some Lp inequalities in best approximation theory. J. Math. Anal. Appl. 154 (1991), 523-528.
MR 1088648
[9] LIM T. C., XU H. K., XU Z. B.: An Lp inequality and its applications to fixed point theory and approximation theory. In: Progress in Approximation Theory, Academic Press, 1991, pp. 609-624.
[10] LIN P. K.:
A uniformly asymptotically regular mapping without fixed points. Canad. Math. Bull. 30 (1987), 481-483.
MR 0919440 |
Zbl 0645.47050
[11] PICHUGOV S. A.:
Jung's constant of the space Lp. (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354).
MR 0954343
[12] PRUS B., SMARZEWSKI R.:
Strongly unique best approximations and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1987), 10-21.
MR 0869515 |
Zbl 0617.41046
[13] PRUS S.:
On Bynum's fixed point theorem. Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545.
MR 1076471 |
Zbl 0724.46020
[14] PRUS S.:
Some estimates for the normal structure coefficient in Banach spaces. Rend. Circ. Mat. Palermo (2) XL (1991), 128-135.
MR 1119750 |
Zbl 0757.46029
[15] SMARZEWSKI R.:
Strongly unique minimization of junctionals in Banach spaces with applications to theory of approximation and fixed points. J. Math. Anal. Appl. 115 (1986), 155-172.
MR 0835591
[16] SMARZEWSKI R.:
Strongly unique best approximation in Banach spaces II. J. Approx. Theory 51 (1987), 202-217.
MR 0913618 |
Zbl 0657.41022
[17] SMARZEWSKI R.: Classical and Extended Strong Unicity of Approximation in Banach Spaces. (Polish), Mariae Curie-Sklodowska University, Lublin, 1986.
[18] SMARZEWSKI R.:
On the inequality of Bynum and Drew. J. Math. Anal. Appl. 150 (1990), 146-150.
MR 1059576
[19] XU H. K.:
Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (1991), 1127-1138.
MR 1111623 |
Zbl 0757.46033
[20] ZALINESCU C.:
On uniformly convex function. J. Math. Anal. Appl. 95 (1983), 344-374.
MR 0716088