Previous |  Up |  Next

Article

References:
[1] BARDARO C.-MANTELLINI I.: A modular convergence theorem for nonlinear integral operators. Comment. Math. Prace Mat. 36 (1996), 27-37. MR 1427818
[2] BARDARO C.-MANTELLINI I.: On a singularity concept for kernels of nonlinear integral operators. Int. Math. J. 1 (2002), 239-254. MR 1840601 | Zbl 0982.47033
[3] BARDARO C.-MANTELLINI I.: On approximation properties of Urysohn integral operators. Int. J. Pure Appl. Math. 3 (2002), 129-148. MR 1937645 | Zbl 1012.41017
[4] BARDARO C.-MANTELLINI I.: Approximation properties in abstract modular spaces for a class of general sampling type operators. Appl. Anal. 85 (2006), 383-413. MR 2196677 | Zbl 1089.41012
[5] BARDARO C.-MUSIELAK J.-VINTI G.: On absolute continuity of a modular connected with strong summability. Comment. Math. Prace Mat. 34 (1994), 21-33. MR 1325071 | Zbl 0832.46020
[6] BARDARO C.-MUSIELAK J.-VINTI G.: Nonlinear Integral Operators and Applications. de Gruyter Ser. Nonlinear Anal. Appl. 9, de Gruyter, Berlin, 2003. MR 1994699 | Zbl 1030.47003
[7] BUTZER P. L.-NESSEL R. J.: Fourier Analysis and Approximation I. Academic Press, New York-London, 1971. MR 0510857
[8] KOZLOWSKI W. M.: Modular Function Spaces. Pure and Applied Math. 122, Marcel Dekker, New York-Basel, 1988. MR 1474499 | Zbl 0747.46022
[9] MANTELLINI I.: Generalized sampling operators in modular spaces. Comment. Math. Prace Mat. 38 (1998), 77-92. MR 1672252 | Zbl 0984.47025
[10] MANTELLINI I.-VINTI G.: Approximation results for nonlinear integral operators in modular spaces and applications. Ann. Polon. Math. 46 (2003), 55-71. MR 1977761 | Zbl 1019.41013
[11] MUSIELAK J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer-Verlag, New York, 1983. MR 0724434 | Zbl 0557.46020
[12] MUSIELAK J.: Nonlinear approximation in some modular function spaces I. Math. Japon. 38 (1993), 83-90. MR 1204187 | Zbl 0779.46017
[13] WILLARD S.: General Topology Addison-Wesley Series in Math. Addison Wesley Publ. Comp., Reading, MA, 1970. MR 0264581
Partner of
EuDML logo