Previous |  Up |  Next

Article

References:
[1] GLASS A. M. W.-SARACINO P.-WOOD C.: Non-amalgamation of ordered groups. Math. Proc. Cambridge Philos. Soc. 95 (1984), 191-195. MR 0735363 | Zbl 0553.06017
[2] GURCHENKOV S. A.: Varieties of nilpotent lattice ordered groups. Algebra and Logic 21 (1982), 499-510. (Russian) MR 0721044 | Zbl 0517.06015
[3] GURCHENKOV S. A.: Varieties of l-groups with the identity [xp,yp] = e have finite basis. Algebra and Logic 23 (1984), 27-47. (Russian) MR 0781403
[4] GURCHENKOV S. A-KOPYTOV V. M.: On covers of variety of abelian lattice ordered groups. Siberian Math. J. 28 (1987), 66-69. (Russian) MR 0904635
[5] HOLLAND W. CH.-GLASS A. M. W.-McCLEARY S.: The structure of l-group varieties. Algebra Universalis 10 (1980), 1-20. MR 0552151
[6] PIERCE K. R.: Amalgamating abelian ordered groups. Pacifìc. J. Math. 43 (1972), 711-723. MR 0319848 | Zbl 0259.06018
[7] PIERCE K. R.: Amalgamations of lattice ordered groups. Trans. Amer. Math. Soc. 172 (1972), 249-260. MR 0325488
[8] POWELL W. B.-TSINAKIS C.: Amalgamations of lattice ordered groups. In: Ordered Algebraic Structures. (W. B. Powell, C. Tsinakis, eds.) Lecture Notes in Pure and Appl. Math. 99, Marcel Dekker, New York, 1985, pp. 171-178. MR 0823771 | Zbl 0572.06011
[9] POWELL W. P.-TSINAKIS C.: Amalgamations of l-groups. In: Lattice ordered groups. (A. M. W. Glass, W. Ch. Holland, eds.) Advances and Techniques, D. Reidel, Dordrecht, 1989, pp. 308-327. MR 1036082
[10] POWELL W. B.-TSINAKIS C.: The failure of the amalgamation property for varieties of representable l-groups. Math. Proc. Cambridge Philos. Soc. 106 (1989), 439-443. MR 1010368
[11] Problem lists, Ordered Algebraic Structures. Notices Amer. Math, Soc 29 (1982), 327.
Partner of
EuDML logo