Previous |  Up |  Next

Article

References:
[1] HAHN K. T.-MITCHELL J.: Hp spaces on bounded symmetric domains. Ann. Polon. Math. 28 (1973), 89-95. MR 0330938
[2] HUA L. K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Chinese Academic Press, Beijing, 1958. MR 0125980
[3] MITCHELL J.-HAHN K. T.: Representation of linear functionals in Hp spaces over bounded symmetric domain in Cn. J. Math. Anal. Appl. 56 (1976), 379-396. MR 0427696
[4] STOLL J. M.: On the rate of growth of the means Mp of holomorphic and pluriharmonic functions on the ball. J. Math. Anal. Appl. 93 (1983), 109-127. MR 0699704
[5] SHI J. H.: On the rate of growth of the means M of holomorphic and pluriharmonic functions on bounded symmetric domain of Cn. J. Math. Anal. Appl. 126 (1987), 161-175. MR 0900536
[6] XIAO J. B.: Pluriharmonic functions on bounded symmetric domain. Chinese Sci. Bull. 38 (1993), 961-964.
[7] FLETT T. K.: The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38 (1972), 746-765. MR 0304667 | Zbl 0246.30031
[8] SHI J. H.: Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cn. Trans. Amer. Math. Soc. 328 (1991), 619-637. MR 1016807
[9] HELGASON S.: Differential Geometry and Symmetric Spaces. Academic Press, New Yoгk, 1962. MR 0145455 | Zbl 0111.18101
[10] VLADIMIROV V. S.: Methods of Theory of Functions of Many Complex Variables. M. I. T. Press, Cambridge MA, 1966. MR 0201669
[11] SHI J. H.: Hardy-Littlewood theorems on bounded symmetric domain. Sci. Sinica Ser. A 4 (1988), 366-375. MR 0969768
Partner of
EuDML logo