[1] BLOCK. L.:
Stability of periodic orbits in the theorem of Sarkovskii. Proc. Amer. Math. Soc. 82. 1981. 333-336.
MR 0593484 |
Zbl 0462.54029
[2] FALCONER. K. J.:
Geometry of Fractal Sets. 1st ed. Cambridge University Press 1984.
MR 0867284
[3] HSINCHU-XIONG JINGCHENG:
A counterexample in dyaynamical systems of [0, 1]. Proc. Amer. Math. Soc. 97, 1986. 361-366.
MR 0835899
[4] KENŽEGULOV. CH. K., ŠARKOVSKII. A. N.:
On properties of the set of limit points of an iterated sequence of continuous functions (Russian). Volžsk. Mat. Sb. 3, 1965, 343-348.
MR 0199316
[5] ŠARKOVSKII. A. N.:
Attracting sets containing no cycles (Russian). Ukrain. Mat. Žurn. 20, 1968. 136-142.
MR 0225314
[6] ŠARKOVSKII. A. N.: On a theorem of G. D. Birkhoff (Russian). Dopov. Akad. Nauk USSR, 1967, No. 5. 429-432.
[7] SMÍTAL. J.:
Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297, 1986. 269-282.
MR 0849479 |
Zbl 0639.54029
[8] VEREJKINA M. B., ŠARKOVSKII. A. N.: /:
Recurrence in one-dimensional dynamical systems, in Approx. and Qualitative Methods of the Theory of Differential & Functional Equations (Russian). Instit. Math. AN USSR. Kiev 1983. pp. 35-46.
MR 0753681