Previous |  Up |  Next

Article

References:
[1] BRÖCKER, Tһ., LANDER L.: Diffеrеntiablе Gеrms and Catastrophеs. Cambridgе Univеrsity Prеss 1975.
[2] BUZANO E., GEYMONAT G., POSTON T.: Post buckling bеhaviour of a non-linеarly hypеrеlastic thin rod with crossеction invariant undеr thе dihеdral group Dn. Arch. Rational Mеch. Anal. 89, 1985, 307-388. MR 0792535
[3] CARR J.: Applications of Cеntеr Manifold Thеory. Appl. Math. Sci. 35, Springеr-Vеrlag 1981. MR 0635782
[4] CUSHMAN R., SANDERS J. A.: Nilpotеnt normal forms and rеprеsеntation thеory of sl(2. R)+. Multiparamеtеr bifurcation thеory, procееdings, еd. M. Golubitsky and J. Guckеnhеimеr, AMS sеriеs: Contеmporary Math., Vol. 56, 1986, 31-51. MR 0855083
[5] DANGELMAYR G., GUCKENHEIMER J.: On a four paramеatеr family of planar vеctor fiеlds. Archivе for Rational Mеch. Anal. Vol. 97, 1987, p. 321. MR 0865844
[6] ELPHICK C., TIRAPEGNI E., BRACHET M., COULLET P., IOOSS G.: A simplе global characterization of normal forms of singular vector fields. Preprint No. 109, University of Nice 1986; in Physica 29D, 1987, 95-127. MR 0923885
[7] FIEDLER B.: Global Bifurcation of Periodic Solutions with Symmetry. Lecture notes in Math. 1309, Springer-Verlag, Heidelberg 1988. MR 0947144 | Zbl 0644.34038
[8] GOLUBITSKY M., ROBERTS M.: A classification of degenerate Hopf bifurcations with 0(2) symmetry. J. Diff.Eq. 69 1987, 216-264. MR 0899161
[9] GOLUBITSKY M., SCHAEFFER D. G.: Singularities and Groups in Bifurcation Theory. Vol. I, Applied Math. Sciences 51, Springer-Verlag, New York, 1985. MR 0771477 | Zbl 0607.35004
[10] GOLUBITSKY M., STEWART I.: Hopf bifurcation in the presence of symmetry. Archive for Rational Mech. and Analysis, Vol. 87, No. 2, 1985, 107-165. MR 0765596 | Zbl 0588.34030
[11] GUCKENHEIMER J.: A codimension two bifurcation with circular symmetry. Multiparameter bifurcation theory, AMS series: Contemporary Math., Vol. 56, 1986, 175-184. MR 0855089 | Zbl 0616.58034
[12] GUCKENHEIMER J., HOLMES P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983. MR 0709768 | Zbl 0515.34001
[13] KLÍČ A.: Period doubling bifurcations in a two-box model of the Brusselator. Aplikace matematiky, Vol. 28, No. 5, 1983, 335-343. MR 0712910 | Zbl 0531.34030
[14] KLÍČ A.: Bifurcations of the periodic solutions in symmetric systems. Aplikace matematiky, Vol. 31,No. 1, 1986, 27-40. MR 0836800 | Zbl 0596.34024
[15] MEDVEĎ M.: The unfoldings of a germ of vector fìelds in the plane with a singularity of codimension 3. Czech. Math. J., Vol. 35, No. 1, 1985, 1-42. MR 0779333 | Zbl 0591.58022
[16] SATTINGER D. H.: Group Theoretical Methods in Bifurcation Theory. Lecture Notes in Math. 762, Springer-Verlag, Berlin 1979.
[17] TAKENS F.: Forced oscillations and bifurcation. Comm. Math. Inst. Rijksuniversitait Ultrecht 3, 1974, 1-59. MR 0478235
[18] VANDERBAUWHEDE A.: Center manifolds, normal forms and elementary bifurcations. to appear in Dynamics Reported. MR 1000977
[19] VANDERBAUWHEDE A.: local Bifurcation and Symmetry. Pitman, Boston 1982. MR 0697724 | Zbl 0539.58022
[20] VANDERBAUWHEDE A.: Hopf bifurcation at non-semisimple eigenvalues. Multiparameter bifurcation theory, AMS series: Contemporary Math., Vol. 56, 1986, 343-353. MR 0855101 | Zbl 0607.58031
[21] VANDERBAUWHEDE A.: Secondary bifurcations of periodic solutions in autonomous systems. Canadian mathemataical Society, Conference Proceedings, Vol. 3, 1987, 693-701. MR 0909945 | Zbl 0629.34051
Partner of
EuDML logo