Previous |  Up |  Next

Article

References:
[1] APPLESON R. R.-LOVÁSZ L.: A characterization of cancellable k-ary structures. Period. Math. Hungar. 6 (1975), 17-19. MR 0373995 | Zbl 0306.08001
[2] BIRKHOFF B.: Lattice Theory. (Rev. ed.), Amer. Math. Soc, New York, 1948. MR 0029876 | Zbl 0033.10103
[3] HASHIMOTO J.: On the product decomposition of partially ordered sets. Math. Japon. 1 (1948), 120-123. MR 0030502 | Zbl 0041.37801
[4] HASHIMOTO J.: On direct product decomposition of partially ordered sets. Ann. of Math. 54 (1951), 315-318. MR 0043067
[5] JAKUBÍK J.-CSONTÓOVÁ M.: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-379. MR 1251882 | Zbl 0802.06008
[6] JAKUBÍK J.-CSONTÓOVÁ M.: Cancellation rule for internal direct product decompositions of a connected partially ordered sets. Math. Bohem. 125 (2000), 115-122. MR 1752083
[7] JAKUBÍK J.: On direct and subdirect product decompositions of partially ordered sets. Math. Slovaca 52 (2002), 377-395. MR 1940243 | Zbl 1016.06002
[8] LOVÁSZ L.: Operations with structures. Acta Math. Acad. Sci. Hungar. 18 (1967), 321-328. MR 0214529 | Zbl 0174.01401
[9] LOVÁSZ L.: On the cancellation law among finite relational structures. Period. Math. Hungar. 1 (1971), 145-156. MR 0284391 | Zbl 0223.08002
[10] McKENZIE R.-McNULTY G.-TAYLOR W.: Algebras, Lattices, Varieties, Vol I. Wadsworth, Belmont, 1987. MR 0883644
[11] NOVOTNÝ J.: On the characterization of a certain class of monounary algebras. Math. Slovaca 40 (1990), 123-126. MR 1094767 | Zbl 0734.08003
[12] PLOŠČICA M.-ZELINA M.: Cancellation among finite unary algebras. Discrete Math. 159 (1996), 191-198. MR 1415293 | Zbl 0859.08003
Partner of
EuDML logo