Previous |  Up |  Next

Article

References:
[1] ATKINSON F. V.-HADDOCK J. R.: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91 (1983), 410-423. MR 0690880 | Zbl 0529.34065
[2] BERETOGLU H.-PITUK M.: Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Discrete Contin. Dуn. Sуst. (A Suppl. Vol. for the Wilmington Meeting 2002) (2003), 100-107. MR 2018105
[3] ČERMÁK J.: Asymptotic behaviour of solutions of some differential equations with an unbounded delay. In: Electron. J. Qual. Theorу Differ. Equ. 2000, Suppl. Proc. бth Colloq. QTDE 2, 2000, pp. 1-8. MR 1798652
[4] ČERMÁK J.: A change of variables in the asymptotic theory of differential equations with unbounded delays. J. Comput. Appl. Math. 143 (2002), 81-93. MR 1907784 | Zbl 1016.34077
[5] CERMÁK J.-KUNDRÁT P.: Linear differential equations with unbounded delays and a forcing term. Abstr. Appl. Anal. 4 (2004), 337-345. MR 2064145 | Zbl 1104.34053
[6] DIBLÍK J.: Asymptotic representation of solutions of equation $y'(t) = \beta (t)[y(t) - y (t - \tau (t))]$. J. Math. Anal. Appl. 217 (1998), 200-215. MR 1492085
[7] KATO T.-MCLEOD J. B.: The functional differential equation $y'(x) = ay(\lambda x) + b y(x)$. Bull. Amer. Math. Soc. 77 (1971), 891-937. MR 0283338
[8] KRISZTIN T.: A note on the convergence of the solutions of a linear functional-differential equation. J. Math. Anal. Appl. 145 (1990), 17-25. MR 1031171 | Zbl 0693.45012
[9] KUNDRÁT P.: On asymptotic properties of solutions of the difference equation $\Delta x(t) = - a x(t) + b x(\tau(t))$. In: Proceedings of ICDEA Conference 2003, Brno Proceedings of the 8th International Conference on Difference Equations and Applications (ICDEA 2003), Masaryk University Brno, Czech Republic, July 28-August 1, 2003. (S. Elaydi et al., eds.), Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 193-200. MR 2144840
[10] LIM E. B.: Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + b x(t) + f (t)$, $0 < \lambda < 1$. SIAM J. Math. Anal. 9 (1978), 915-920. MR 0506772
[11] PITUK M.: On the limits of solutions of functional differential equations. Math. Bohem. 118 (1993), 53-66. MR 1213833 | Zbl 0778.34056
Partner of
EuDML logo