Previous |  Up |  Next

Article

References:
[1] EWALD G., KLEINSHMIDT P., PACHNER U., SCHULZ, CH.: Neuere Entwicklungen in der kombinatorischen Konvexgeometrie. In: Contributions to Geometry (J. Tolke, J. M. Wills, eds.), Birkhäuser Verlag, Basel, 1979, pp. 131-169. MR 0568497
[2] GRÜNBAUM B.: Convex Polytopes. Interscience, New York, 1967. MR 0226496
[3] GRÜNBAUM B., WALTHER H.: Shortness exponents offamilies of graphs. J. Combin. Theory Ser. A 14 (1973), 364-385. MR 0314691
[4] HARANT J., WALTHER H.: Some new results about the shortness exponent in polyhedral graphs. Časopis Pěst. Mat. 112 (1987), 114-122. MR 0897639 | Zbl 0642.05039
[5] JACKSON B.: Longest cycles in 3-connected cubic graphs. J. Combin. Theory Ser. B 41 (1986), 17-26. MR 0854600 | Zbl 0591.05040
[6] JENDROĽ S., TKÁČ M.: Convex 3-polytopes with exactly two types of edges. Discrete Math. 84 (1990), 143-160. MR 1071654 | Zbl 0705.52014
[7] JENDROĽ S., KEKEŇÁK R.: Longest circuits in triangular and quadrangular 3-polytopes with two types of edges. Math. Slovaca 40 (1990), 341-357. MR 1120965 | Zbl 0757.05073
[8] JENDROĽ S., MIHÓK P.: Note on a class of Hamiltonian polytopes. Discrete Math. 71 (1988), 233-241. MR 0959008
[9] OWENS P. J.: Simple 3-polytopial graphs with edges of only two types and shortness coefficients. Discrete Math. 59 (1986), 107-114. MR 0837960
[10] OWENS P. J.: Non-Hamiltonian simple 3-polytopes with only one type of face besides triangles. In: Ann. Discrete Math. 20, Nоrth-Hоlland, Amsterdam-New Yоrk, 1984, pp. 241-251. MR 0791037 | Zbl 0571.05033
[11] TKÁČ M.: Combinatorial properties of certain classes of 3-polytopial planar graphs. In: Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam-New York, 1992, pp. 699-704. MR 1218228
Partner of
EuDML logo