Previous |  Up |  Next

Article

References:
[1] ADÁMEK J.: Mathematical Structures and Categories. SNTL, Praha, 1982. (Czech)
[2] ALBERT A.: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York-London, 1972 [Russian translation: Moskva, 1977]. MR 0331659 | Zbl 0253.62030
[3] BÖRGER R.: On the existence of Moore-Penrose-inverses in categories with involution. In: Workshop on Category Theory. Math.-Arbeitspapiere Nr. 28, Uni Bremen, 1987.
[4] CALENKO M. S.-SULGEJFER E. G.: Osnovy teorii kategorij. Nauka, Moskva, 1974. (Russian)
[5] CHIPMAN J. S.: Specification problems in regression analysis. In: Proceedings of the Symposium on Theory of Generalized Inverses of Matrices, Lubbock, Texas, 1968 (T. L. Boullion, P. L. Odel, eds.), 1969, pp. 114-176. MR 0254984
[6] CLINE. R. E.: Representations for the generalized inverse of partitioned matrix. J. Soc. Ind. Appl. Math. 12 (1964), 5S8-600. MR 0172890
[7] GREVILLE. T. N. E.: Some applications of the pseudoinverse of a matrix. SIAM Rev. 2 (1960), 15-22. MR 0110185 | Zbl 0168.13303
[8] MITCHELL B.: Theory of Categories. Academic Press, New York-London, 1965. MR 0202787 | Zbl 0136.00604
[9] PEŠKA P.: Pseudoinverse Matrices and Algorithms of their Computation in MATLAB. Thesis, Masaryk University, Brno, 1995. (Czech)
[10] PUYSTJENS R.-ROBINSON D. W.: The Moore-Penrose inverse of a morphism in an additive category. Comm. Algebra 12 (1984), 287-299. MR 0737249 | Zbl 0534.18004
[11] SKULA L.: Involution for matrices and generalized, inverses. Linear Algebra Appl. 271 (1998), 283-308. MR 1485173
Partner of
EuDML logo