Previous |  Up |  Next

Article

References:
[1] COX D. R.-MILLER H. D.: The Theory of Stochastic Processes. Methuen, London, 1965. MR 0192521 | Zbl 0149.12902
[2] EL-SHEHAWEY M. A.: On the frequency count for a random walk with absorbing boundaries: a carcinogenesis example I. J. Phys. A, Math. Gen. 27 (1994), 7035-7046. MR 1309785 | Zbl 0843.60086
[3] EL-SHEHAWEY M. A.-MATRAFI B. N.: On a gambler's ruin problem. Math. Slovaca 47 (1997), 483-488. MR 1796961 | Zbl 0965.60043
[4] EL-SHEHAWEY M. A.: Absorption probabilities for a random walk between two partially absorbing boudaries I. J. Phys. A, Math. Gen. 33 (2000), 9005-9013. MR 1811225
[5] FELLER W.: An Introduction to Probability Theory and its Applications. Vol. 1 (Зrd ed.), Wiley, New York, 1968. MR 0228020 | Zbl 0155.23101
[6] NEUTS M. F.: General transition probabilities for finite Markov chains. Math. Proc. Cambridge Philos. Soc. 60 (1964), 83-91. MR 0158436 | Zbl 0124.34101
[7] RAYKIN M.: First passage probability of a random walk on a disordered one-dimensional lattice. J. Phys. A, Math. Gen. 26 (1993), 449-466. MR 1210918 | Zbl 0768.60061
[8] SRINIVASAN S. K.-MEHATA K. M.: Stochastic Processes. Mc Graw Hill, New Delhi, 1976.
[9] WEISS G. H.-HAVLIN S.: Trapping of random walks on the line. 3. Statist. Phys. 37 (1984), 17-25. MR 0774882 | Zbl 0586.60066
[10] WHITTAKER E. T.-WATSON G. N.: A Course of Modern Analysis (4th ed.). University press, Cambridge, 1963. MR 1424469
Partner of
EuDML logo