Previous |  Up |  Next

Article

References:
[1] BIGARD A.-KEIMEL K.-WOLFENSTEIN S.: Groupes et anneaux réticulés. Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653 | Zbl 0384.06022
[2] CHANG C. C.: Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
[3] DVUREČENSKIJ A.: Pseudo MV-algebras are intervals in i-groups. J. Austral. Math. Soc. 70 (2002), 427-445. MR 1902211
[4] GEORGESCU G.-IORGULESCU A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras. In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, INFOREC Printing House, Bucharest, 1999, pp. 961-968.
[5] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras. Mult.-Valued Log. 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[6] HORT D.-RACHŮNEK J.: Lex ideals of generalized MV-algebras. In: Combinatorics, Computability and Logic, Proc. DMTCS'01 (C S. Calude, M. J. Dinneen, S. Sburlan, eds.), Springer-Verlag, London, 2001, pp. 125-136. MR 1934826 | Zbl 0983.06015
[7] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacky Univ., Olomouc, 1996.
[8] KÜHR J.: Ideals of noncommutative DRl-monoids. Czechoslovak Math. J. (Submitted). MR 2121658
[9] KÜHR J.: Prime ideals and polars in DRl-monoids. (Submitted).
[10] MUNDICI D.: Interpretation of AF C*-algebras in sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173
[11] RACHŮNEK J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434 | Zbl 1012.06012
[12] RACHŮNEK J.: Prime spectra of non-commutative generalizations of MV-algebras. Algebra Universalis 48 (2002), 151-169. MR 1929902 | Zbl 1058.06015
[13] SWAMY K. L. N.: Dually residuated lattice ordered semigroups I. Math. Ann. 159 (1965), 105-114. MR 0183797
Partner of
EuDML logo