[1] BIGARD A.-KEIMEL K.-WOLFENSTEIN S.:
Groupes et anneaux réticulés. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
MR 0552653 |
Zbl 0384.06022
[2] CHANG C. C.:
Algebraic analysis of many valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302
[3] DVUREČENSKIJ A.:
Pseudo MV-algebras are intervals in i-groups. J. Austral. Math. Soc. 70 (2002), 427-445.
MR 1902211
[4] GEORGESCU G.-IORGULESCU A.: Pseudo-MV algebras: A non-commutative extension of MV-algebras. In: Proc. Fourth Inter. Symp. Econ. Inform., May 6-9, INFOREC Printing House, Bucharest, 1999, pp. 961-968.
[6] HORT D.-RACHŮNEK J.:
Lex ideals of generalized MV-algebras. In: Combinatorics, Computability and Logic, Proc. DMTCS'01 (C S. Calude, M. J. Dinneen, S. Sburlan, eds.), Springer-Verlag, London, 2001, pp. 125-136.
MR 1934826 |
Zbl 0983.06015
[7] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacky Univ., Olomouc, 1996.
[8] KÜHR J.:
Ideals of noncommutative DRl-monoids. Czechoslovak Math. J. (Submitted).
MR 2121658
[9] KÜHR J.: Prime ideals and polars in DRl-monoids. (Submitted).
[10] MUNDICI D.:
Interpretation of AF C*-algebras in sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173
[11] RACHŮNEK J.:
A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
MR 1905434 |
Zbl 1012.06012
[12] RACHŮNEK J.:
Prime spectra of non-commutative generalizations of MV-algebras. Algebra Universalis 48 (2002), 151-169.
MR 1929902 |
Zbl 1058.06015
[13] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups I. Math. Ann. 159 (1965), 105-114.
MR 0183797