Previous |  Up |  Next

Article

Title: On the permanence properties of interval homogeneous orthomodular lattices (English)
Author: De Simone, Anna
Author: Navara, Mirko
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 1
Year: 2004
Pages: 13-21
.
Category: math
.
MSC: 06C15
idZBL: Zbl 1077.06005
idMR: MR2074026
.
Date available: 2009-09-25T14:18:00Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128934
.
Reference: [1] BERAN L.: Orthomodular Lattices.Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984. MR 0785005
Reference: [2] DE SIMONE A.-MUNDICI D.-NAVARA M.: A : Cantor-Bernstein theorem for a-complete MV-algebras.Czechoslovak Math. J. 53 (128) (2003), 437-447. MR 1983464
Reference: [3] DE SIMONE A.-NAVARA M.-PTÁK P.: On interval homogeneous orthomodular lattices.Comment. Math. Univ. Carolin. 42 (2001), 23-30. Zbl 1052.06007, MR 1825370
Reference: [4] FREYTES H.: An algebraic version of the Cantor-Bernstein-Schroder Theorem.Czechoslovak Math. J. (To appear). MR 2086720
Reference: [5] JAKUBÍK J.: A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras.Tatra Mt. Math. Publ. 22 (2002), 91-103. MR 1889037
Reference: [6] JENČA G.: A Cant or-Bernstein type theorem for effect algebras.Algebra Universalis 48 (2002), 399-411. MR 1967089
Reference: [7] KALMBACH G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [8] KALLUS M.-TRNKOVÁ V.: Symmetries and retracts of quantum logics.Internat. J. Theor. Phys. 26 (1987), 1-9. Zbl 0626.06013, MR 0890206
Reference: [9] : Handbook of Boolean Algebras I.(J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989.
Reference: [10] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer, Dordrecht-Boston-London, 1991. Zbl 0743.03039, MR 1176314
Reference: [11] TRNKOVÁ V.: Automorphisms and symmetries of quantum logics.Internat. J. Theor. Physics 28 (1989), 1195-1214. Zbl 0697.03034, MR 1031603
.

Files

Files Size Format View
MathSlov_54-2004-1_3.pdf 626.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo