Title:
|
On the permanence properties of interval homogeneous orthomodular lattices (English) |
Author:
|
De Simone, Anna |
Author:
|
Navara, Mirko |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
13-21 |
. |
Category:
|
math |
. |
MSC:
|
06C15 |
idZBL:
|
Zbl 1077.06005 |
idMR:
|
MR2074026 |
. |
Date available:
|
2009-09-25T14:18:00Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128934 |
. |
Reference:
|
[1] BERAN L.: Orthomodular Lattices.Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984. MR 0785005 |
Reference:
|
[2] DE SIMONE A.-MUNDICI D.-NAVARA M.: A : Cantor-Bernstein theorem for a-complete MV-algebras.Czechoslovak Math. J. 53 (128) (2003), 437-447. MR 1983464 |
Reference:
|
[3] DE SIMONE A.-NAVARA M.-PTÁK P.: On interval homogeneous orthomodular lattices.Comment. Math. Univ. Carolin. 42 (2001), 23-30. Zbl 1052.06007, MR 1825370 |
Reference:
|
[4] FREYTES H.: An algebraic version of the Cantor-Bernstein-Schroder Theorem.Czechoslovak Math. J. (To appear). MR 2086720 |
Reference:
|
[5] JAKUBÍK J.: A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras.Tatra Mt. Math. Publ. 22 (2002), 91-103. MR 1889037 |
Reference:
|
[6] JENČA G.: A Cant or-Bernstein type theorem for effect algebras.Algebra Universalis 48 (2002), 399-411. MR 1967089 |
Reference:
|
[7] KALMBACH G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496 |
Reference:
|
[8] KALLUS M.-TRNKOVÁ V.: Symmetries and retracts of quantum logics.Internat. J. Theor. Phys. 26 (1987), 1-9. Zbl 0626.06013, MR 0890206 |
Reference:
|
[9]
: Handbook of Boolean Algebras I.(J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989. |
Reference:
|
[10] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer, Dordrecht-Boston-London, 1991. Zbl 0743.03039, MR 1176314 |
Reference:
|
[11] TRNKOVÁ V.: Automorphisms and symmetries of quantum logics.Internat. J. Theor. Physics 28 (1989), 1195-1214. Zbl 0697.03034, MR 1031603 |
. |