Previous |  Up |  Next

Article

References:
[1] BATT J.: Applications of the Oгlicz-Pettis Theorem to opeгator-valued measures aпd compact and weakly compact linear tгansformations on the space of continuous functions. Revue Roumaine Math. Pure Appl. 14 (1969), 907-935. MR 0388158
[2] BATT J.: On weak compactness in spaces of vectoг-valued measures and Bochneг-integrable functions in connection with the Radon-Nikodym property of Banach spaces. Revue Roumaine Math. Pure Appl. 19 (1974), 285-304. MR 0341081
[3] DOBRAKOV I.: On subadditive operators on C0(T). Bull. Acad. Polonaise Sciences Math. Astr. Phys. 20 (1972), 561-562. MR 0318856
[4] DOBRAKOV I.: On representation of linear operators on C0(T, X). Czech. Math. J. 21 (96) (1971), 13-30. MR 0276804
[5] DOBRAKOV I.: On submeasures I. Dissertationes Mathematicae 112, Warszawa 1974. MR 0367140 | Zbl 0292.28001
[6] DUNFORD N., SCHWARTZ J. T.: Linear operators, part I. Interscience, New York 1958.
[7] FREMLIN D. H.: Topological Riesz spaces and measure theory. Cambridge University Press 1974. MR 0454575 | Zbl 0273.46035
[8] FUGLEDE B.: Capacity as a sublinear functional generalizing an integral. Det Kongelige Danske videnskabernes Selskab, Matematik-fysiske Meddelelser, København 1971. MR 0291488 | Zbl 0222.31002
[9] GOULD G. G.: Integration over vector-valued measures. Proc. London Math. Soc. (3) 15 (1965), 193-225. MR 0174694 | Zbl 0138.38403
[10] HALMOS P. R.: Measure theory. D. Van Nostrand, New York 1950. MR 0033869 | Zbl 0040.16802
[11] THOMAS E. G. F.: On Radon maps with values in arbitrary topological vector spaces, and their integral extensions. Yale University 1972.
Partner of
EuDML logo