Previous |  Up |  Next

Article

References:
[1] FENG, KE QIN.: The Ankeny-Artin-Chowla formula for cubic cyclic number fields. J. China Univ. Sci. Тech. 12 (1982), 20-27. MR 0705871
[2] IТO H.: Congruence relations of Ankeny-Artin-Chowla type for pure cubic field. Nagoya Math. J. 96 (1984), 95-112. MR 0771071
[3] JAKUBEC S.: The congruence for Gauss's period. J. Number Тheory 48 (1994), 36-45. MR 1284872
[4] JAKUBEC S.: Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l. Math. Proc. Cambridge Philos. Soc. 119 (1996), 17-22. MR 1356153 | Zbl 0853.11085
[5] KAMEI M.: Congruences of Ankeny-Artin-Chowla type for pure quartic and sectic fields. Nagoya Math. J. 108 (1987), 131-144. MR 0920331 | Zbl 0634.12009
[6] MARKO F.: On the existence of p-units and Minkowski units in totally real cyclic fields. Abh. Math. Sem. Univ. Hamburg (To appeaг). MR 1418221 | Zbl 0869.11087
[7] SCHERTZ R.: Über die analitische Klassenzahlformel für realle abelsche Zahlkorper. J. Reine Angew. Math. 307-308 (1979), 424-430. MR 0534237
[8] ZHANG, XIAN KE.: Ten formulae of type Ankeny-Artin-Chowla for class number of general cyclic quartic fields. Sci. China Ser. A 32 (1989), 417-428. MR 1050029
Partner of
EuDML logo