[1] ABAY-ASMEROM G.: On genus embedding of the tensor product of graphs. (To appear).
[2] Beineke L.-Wilson R. J. (eds.):
Selected Topics in Graph Theory. Academic Press, New York, 1978.
MR 0543656 |
Zbl 0423.00003
[3] BOUCHET A.:
Produit tensoriel de rotations. Journées de Combinatoire et Informatique de Bordeaux, Editions Univ. Bordeaux 1 (1975), 53-59.
Zbl 0344.05163
[4] BOUCHET A.-MOHAR B.:
Triangular embeddings of tensor products of graphs. In: Topics in Combinatorics and Graph Theory (R. Bodendiek and R. Henn, eds.), Physica-Verlag, Heidelberg, 1990, pp. 129-135.
MR 1100030 |
Zbl 0697.05025
[5] DAKIĆ T.-PISANSKI T.:
On the genus of the tensor product of graphs where one factor is a regular graph. Discrete Math. (To appear).
MR 1303391 |
Zbl 0812.05019
[6] DAKIĆ T.-NEDELA R.-PISANSKI T.:
Embeddings of tensor product graphs. In: Proc. of the Seventh Conference on Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo (To appear).
MR 1405868 |
Zbl 0848.05025
[9] WEICHSEL P. M.:
The Kronecker product of graphs. Proc. Amer. Math. Soc. 13 (1962), 47-52.
MR 0133816 |
Zbl 0102.38801
[10] WHIТE A. Т.:
Covering graphs and graphical products. In: Proc. Sixth Yugoslav Seminar of Graph Тheory (Dubrovnik 1985), Novi Sad, 1986, pp. 239-247.
MR 0903474
[11] WHIТE A. Т.: Graphs, Groups and Surfaces. (2nd Edition), North-Holland, Amsterdam.
[12] ŽELEZNÍK V.:
Quadrilateral embeddings of the conjunction of graphs. Math. Slovaca 38 (1988), 89-98.
MR 0945362 |
Zbl 0654.05025