[2] NEWCOMB R. L.:
Topologies Which are Compact Modulo an Ideal. Ph.D. dissertation, Univ. of Cal. at Santa Barbara, 1967.
MR 2939797
[3] HAMLETT T. R, JANKOVIČ D.:
Compactness with respect to an ideal. Boll. Un. Mat. Ital. B (7) 4 (1990), 849-861.
MR 1086708 |
Zbl 0741.54001
[4] HAMLETT T. R., ROSE D.:
Local compactness with respect to an ideal. Kyung Pook Math. J. 32 (1992), 31-43.
MR 1170488 |
Zbl 0767.54019
[6] VAIDYANATHASWAMY R.:
Set Topology. Chelsea Publishing Company, New York, 1960.
MR 0115151
[7] NJÅSTAD O.: Classes of topologies defined by ideals. Matematisk Institutt, Universitetet I Trondheim, (Preprint).
[8] NJÅSTAD O.:
Remarks on topologies defined by local properties. Det Norske Videnskabs-Akademi, Avh. I Mat. Naturv, Klasse, Ny Serie No. 8 (1966), 1-16.
MR 0215278 |
Zbl 0148.16504
[9] JANKOVIČ D., HAMLETT T. R.:
New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 255-310.
MR 1048441 |
Zbl 0723.54005
[10] JANKOVIČ D., HAMLETT T. R.:
Compatible extensions of ideals. Boll. Un. Mat. Ital. B (7), (To appear).
MR 1191948 |
Zbl 0818.54002
[11] VAIDYANATHASWAMY R.:
The localization theory in set-topology. Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51-61.
MR 0010961
[12] SEMADENI Z.:
Functions with sets of points of discontinuity belonging to a fixed ideal. Fund. Math. LII (1963), 25-39.
MR 0149259 |
Zbl 0146.12302
[14] SAMUELS P.:
A topology formed from a given topology and ideal. J. London Math. Soc. (2) 10 (1975), 409-416.
MR 0375200 |
Zbl 0303.54001
[15] BANKSTON P.:
The total negation of a topological property. Illinois J. Math. 23 (1979), 241-252.
MR 0528560 |
Zbl 0405.54003