Previous |  Up |  Next

Article

References:
[1] FU H.-L.: On latin (n x n x (n - 2))-parallelepipeds. Tamkang J. of Mathematics 17, 1986, 107-111. MR 0872667
[2] HALL M., Jr.: An existence theorem for latin squares. Bull. Amer. Math. Soc. 51, 1945, 387-388. MR 0013111 | Zbl 0060.02801
[3] HORÁK P.: Latin parallelepipeds and cubes. J. Combinatorial Theory Ser. A 33, 1982, 213-214. MR 0677575 | Zbl 0492.05012
[4] HORÁK P.: Solution of four problems from Eger. 1981, I. In: Graphs and Other Combinatorial Topics, Proc. of the Зrd Czechoslovak Symposium on Graph Theory, Teubner-Texte zur Mathematik, band 59, Leipzig, 1983, 115-117. MR 0737023 | Zbl 0525.05001
[5] RYSER H. J.: A combinatorial theorem with an application to latin rectangles. Proc. Amer. Math. Soc. 2, 1951, 550-552. MR 0042361 | Zbl 0043.01202
Partner of
EuDML logo