[1] FU H.-L.:
On latin (n x n x (n - 2))-parallelepipeds. Tamkang J. of Mathematics 17, 1986, 107-111.
MR 0872667
[2] HALL M., Jr.:
An existence theorem for latin squares. Bull. Amer. Math. Soc. 51, 1945, 387-388.
MR 0013111 |
Zbl 0060.02801
[3] HORÁK P.:
Latin parallelepipeds and cubes. J. Combinatorial Theory Ser. A 33, 1982, 213-214.
MR 0677575 |
Zbl 0492.05012
[4] HORÁK P.:
Solution of four problems from Eger. 1981, I. In: Graphs and Other Combinatorial Topics, Proc. of the Зrd Czechoslovak Symposium on Graph Theory, Teubner-Texte zur Mathematik, band 59, Leipzig, 1983, 115-117.
MR 0737023 |
Zbl 0525.05001
[5] RYSER H. J.:
A combinatorial theorem with an application to latin rectangles. Proc. Amer. Math. Soc. 2, 1951, 550-552.
MR 0042361 |
Zbl 0043.01202