Previous |  Up |  Next

Article

References:
[1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et anneaux réticulés, Lecture Notes in Mathematics 608. Springer Verlag, Berlin, 1977. MR 0552653
[2] G. J. M. H. Buskes: Disjoint sequences and completeness properties. Indag. Math (Proc. Netherl. Acad. Sci. A 88) 47 (1985), 11–19. MR 0783002 | Zbl 0566.46004
[3] P. Conrad: Lattice ordered groups. Tulane University, 1970. Zbl 0258.06011
[4] P. Conrad: $K$-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale (1980), Lecture Notes in Mathematics 848, 1981, pp. 186–207. MR 0613186 | Zbl 0455.06010
[5] M. Darnel: Closure operations on radicals of lattice ordered groups. Czechoslov. Math. J. 37 (1987), 51–64. MR 0875127
[6] L. Fuchs: Partially ordered algebraic systems. Oxford, 1963. MR 0171864 | Zbl 0137.02001
[7] W. C. Holland: Varieties of $\ell $-groups are torsion classes. Czechoslov. Math. J. 29 (1979), 11–12. MR 0518135
[8] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 31, Academic Press, New York-London, 1977, pp. 451–477. MR 0491397
[9] J. Jakubík: Projectable kernel of a lattice ordered group. Universal algebra and applications, Banach Center Publ. Vol. 9, 1982, pp. 105–112. MR 0738807
[10] J. Jakubík: Kernels of lattice ordered groups defined by properties of sequences. Časopis pěst. matem. 109 (1984), 290–298. MR 0755595
[11] J. Jakubík: On some types of kernels of a convergence $\ell $-group. Czechoslov. Math. J. 39 (1989), 239–247. MR 0992131
[12] J. Jakubík: Closure operators on the lattice of radical classes of lattice ordered groups. Czechoslov. Math. J. 38 (1988), 71–77. MR 0925941
[13] J. Jakubík: On a radical class of lattice ordered groups. Czechoslov. Math. J. 39 (1989), 641–643. MR 1017999
[14] W. A. J. Luxemburg, A. C. Zaanen: Riesz spaces, Volume I. Amsterdam-London, 1971. MR 0511676
[15] J. Martinez: Torsion theory for lattice groups. Czechoslov. Math. J. 25 (1975), 284–292. MR 0389705
[16] N. Ja. Medvedev: On the lattice of radicals of a finitely generated $\ell $-group. Math. Slovaca 33 (1983), 185–188. (Russian) MR 0699088
[17] R. Sikorski: Boolean algebras, Second edition. Berlin, 1964. MR 0177920
Partner of
EuDML logo