[1] Note to the problem of intersecting broken lines (Czech). Čas. pěst. mat. 83 (1958), 236–240.
[2] On a certain group of endomorphisms on a simply ordered set I (Czech). Čas. pěst. mat. 84 (1959), 177–182.
[3] On a certain group of endomorphisms on a simply ordered set II (Czech). Čas. pěst. mat. 85 (1960), 263–273.
[4]
Bemerkung zu einer Halbgruppe der Endomorphismen auf einer einfach geordneten Menge. Čas. pěst. mat. 85 (1960), 410–417.
MR 0130312 |
Zbl 0122.02601
[5] On singular systems of integer-differential equations with constant coefficients and their realization by linear electric circerits (Czech). Práce ČVUT, řada III elektrotechnická, č. 5 (1965), 63–72.
[6]
On characters of chains (Czech). Čas. pěst. mat. 91 (1966), 1–3 (Spoluautor: O. Kowalski.).
MR 0190043
[7]
On characters of semigroups whose idempotents form a chain (Czech). Čas. pěst. mat. 91 (1966), 4–7.
MR 0197602
[8] Note to the Richards transformation (Russian). Acta Polytechnica — Práce ČVUT, III 1 (1967), 27–34.
[9]
The diameter of the graph of a semigroup (Czech). Čas. pěst. mat. 92 (1967), 206–211.
MR 0223275
[10]
On periodic and recurrent compact groupoids. Čas. pěst. mat. 93 (1968), 262–272.
MR 0252550
[11]
A contribution to the foundations of network theory using the distribution theory. Czechoslov. Math. J. 19(94) (1969), 697–710.
MR 0253047
[12]
On a certain relation for closure operations on a semigroup. Czechoslov. Math. J. 20(95) (1970), 220–231.
MR 0260905
[13]
Note on a certain relation for closure operations on a compact semigroup. Czechoslov. Math. J. 20(95) (1970), 337–339.
MR 0260906
[14]
Contribution to the foundations of network theory using the distribution theory, II. Czechoslov. Math. J. 21(96) (1971), 35–45.
MR 0276763 |
Zbl 0217.16703
[16]
Right prime ideals and maximal right ideals in semigroups. Mat. Čas. Slovensk. Akad. Vied 21 (1971), 87–90.
MR 0302801 |
Zbl 0219.20043
[17]
A note on classes of regularity in semigroups. Mat. Čas. Slovensk. Akad. Vied 21 (1971), 312–317.
MR 0301122 |
Zbl 0235.20057
[19]
Archimedean equivalence on ordered semigroups. Czechoslov. Math. J. 22(97) (1972), 210–219.
MR 0294200 |
Zbl 0251.06025
[20]
A note on an ideal quasi-order in semigroups. Publ. Math. Debrecen 18 (1972), 177–182.
MR 0308302
[21]
A characterization of semilattices of left or right groups. Czechoslov. Math. J. 22(97) (1972), 522–524.
MR 0313431 |
Zbl 0247.20073
[23]
A relation for closure operations on a semigroup. Mat. Čas. Slovensk. Akad. Vied 23 (1973), 249–256.
MR 0364509 |
Zbl 0265.20053
[26]
$T$-prime subsets in semigroups. Mat. Čas. Slovensk. Akad. Vied. 25 (1975), 223–229.
MR 0399320
[27]
On semigroups having regular globals. Colloquia Math. Soc. János Bolyai 20. Algebraic theory of semigroups, Szeged, 1976, pp. 453–461.
MR 0541132
[28]
The chain of right ideals in rings and semigroups. Ann. Univ. Sci. Budapest, Sectio Math. 20 (1977), 21, 22.
MR 0476798 |
Zbl 0372.16012
[30]
On the intersection graph of a commutative distributive groupoid. Math. Slovaca 29 (1979), 57–62.
MR 0561777 |
Zbl 0408.20040
[33]
Relative compact elements in lattices. Colloquia Math. Soc. János Bolayai 33, Szeged (1980), 667–674.
MR 0724289
[34]
On representations of tolerance ordered commutative semigroups. Czechoslov. Math. J. 31(106) (1981), 153–158.
MR 0604121 |
Zbl 0469.20035
[37]
Note on a completely symmetrical semigroup. Notes on Semigroups VII, 1981–4, 1–4, Dept. of Math. Karl Marx Univ. of Economics, Budapest.
Zbl 0478.20042
[38]
Atomicity of tolerance lattices of commutative semigroups. Czechoslov. Math. J. 33(108) (1983), 485–498.
MR 0718931 |
Zbl 0535.20041
[39]
Modularity and distributivity of tolerance lattices of commutative inverse semigroups. Czechoslov. Math. J. 35(110) (1985), 146–157.
MR 0779342 |
Zbl 0581.20058
[40]
Modularity and distributivity of tolerance lattices of commutative separative semigroups. Czechoslov. Math. J. 35(110) (1985), 333–337.
MR 0787135 |
Zbl 0573.20062
[42]
Semigroups whose proper one-sided ideals are $t$-archimedean. Mat. Věstnik 37 (1985), 315–321.
Zbl 0601.20055
[43]
Tolerance distributive and tolerance modular varieties of commutative semigroups. Czechoslov. Math. J. 36(11) (1986), 485–488.
MR 0847775 |
Zbl 0614.20043
[44]
On a certain class of BCK-algebras with condition (S). Math. Japonica 31 (1986), no. 5, 775–782.
MR 0872798 |
Zbl 0616.03044
[45]
Tolerance distributive and tolerance boolean varieties of semigroups. Czechoslov. Math. J. 36(111) (1986), 617–622.
MR 0863191 |
Zbl 0612.20033
[46]
Note on band decompositions of weakly exponential semigroups. Ann. Univ. Sci. Budapest, Sectio Math 29 (1986), 139–141.
MR 0893495 |
Zbl 0622.20054
[48]
Note on the congruence lattice of a commutative separative semigroup. Čas. pěst. mat. 113 (1988), 74–79.
MR 0930808 |
Zbl 0639.20043
[49]
Commutative semigroups whose lattice of tolerances is boolean. Czechoslov. Math. J. 38(113) (1988), 226–230.
MR 0946290 |
Zbl 0657.20052
[51]
Direct decomposability of tolerances and congruences on semigroups. Czechoslov. Math. J. 38(113) (1988), 701–704.
MR 0962913 |
Zbl 0668.08002
[52]
Algebras with tolerance extension property in $O$. Czechoslov. Math. J. 39(114) (1989), 142–146, (coauthor: I. Chajda).
MR 0983491
[53]
On $\alpha $-ideals and generalized $\alpha $-ideals in semigroups. Czechoslov. Math. J. 39(114) (1989), 522–527, (coauthor: M. M. Miccoli).
MR 1006318 |
Zbl 0684.20053
[54]
Tolerance modular varieties of semigroups. Czechoslov. Math. J. 40(115) (1990), 441–452.
MR 1065023 |
Zbl 0731.20039
[55]
On varieties of regular $\ast $-semigroups. Czechoslov. Math. J. 42(116) (1991), 110–119.
MR 1087630
[56]
On varieties of regular $\ast $-semigroups, II. Czechoslov. Math. J. 41(116) (1991), 512–517.
MR 1117804