[2] Chajda I.:
Weak coherence of congruences. Czechoslovak Math. Journal 41 (1991), 149–154.
MR 1087635 |
Zbl 0796.08003
[3] Clark D. M. and Fleischer I.:
$A \times A$ congruence coherent implies $A$ congruence permutable. Algebra Univ. 24 (1987), 192.
DOI 10.1007/BF01188397 |
MR 0921544
[4] Csákány B.:
Characterizations of regular varieties. Acta Sci. Math (Szeged) 31 (1970), 187–189.
MR 0272697
[6] Duda J.:
Mal’cev conditions for regular and weakly regular subalgebras of the square. Acta Sci. Math. (Szeged) 46 (1983), 29–34.
MR 0739019 |
Zbl 0533.08002
[7] Duda J.:
Varieties having directly decomposable congruence classes. Čas. pěst. Matem. 111 (1986), 394–403.
MR 0871715 |
Zbl 0606.08001
[9] Geiger D.: Coherent algebras. Notices Amer. Math. Soc. 21 (1974), A-436.
[10] Hagemann J.: On regular and weakly regular congruences. Preprint Nr. 75 TH-Darmstadt (1973).