Previous |  Up |  Next

Article

Keywords:
symplectomorphism; circle action
Summary:
We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.
References:
[1] Ahara, K., Hattori, A.: $4$-dimensional symplectic $S^1$-manifolds admitting moment map. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (2) (1991), 251–298. MR 1127083
[2] Anjos, S.: Homotopy type of symplectomorphism groups of $S^2\times S^2$. Geom. Topol. 6 (2002), 195–218, (electronic). DOI 10.2140/gt.2002.6.195 | MR 1914568 | Zbl 1023.57021
[3] Audin, M.: Torus actions on symplectic manifolds. Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, revised edition, 2004. MR 2091310 | Zbl 1062.57040
[4] Baldridge, S.: Seiberg-Witten vanishing theorem for $S^1$-manifolds with fixed points. Pacific J. Math. 217 (1) (2004), 1–10. DOI 10.2140/pjm.2004.217.1 | MR 2105762 | Zbl 1071.57027
[5] Karshon, Y.: Periodic Hamiltonian flows on four-dimensional manifolds. Mem. Amer. Math. Soc. 141 (672) (1999), viii+71. MR 1612833 | Zbl 0982.70011
[6] Kędra, J.: Evaluation fibrations and topology of symplectomorphisms. Proc. Amer. Math. Soc. 133 (1) (2005), 305–312, (electronic). DOI 10.1090/S0002-9939-04-07507-0 | MR 2086223 | Zbl 1053.55011
[7] Lalonde, F., Pinsonnault, M.: The topology of the space of symplectic balls in rational 4-manifolds. Duke Math. J. 122 (2) (2004), 347–397. DOI 10.1215/S0012-7094-04-12223-7 | MR 2053755 | Zbl 1063.57023
[8] McDuff, D.: Symplectomorphism Groups and almost Complex Structures. In: Essays on geometry and related topics, Vol. 1, 2, 2001, volume 38 of Monogr. Enseign. Math., pp. 527–556. MR 1929338 | Zbl 1010.53064
[9] McDuff, D.: The symplectomorphism group of a blow up. Geom. Dedicata 132 (2008), 1–29. DOI 10.1007/s10711-007-9175-3 | MR 2396906 | Zbl 1155.53055
[10] McDuff, D., Salamon, D.: Introduction to symplectic topology. Oxford Math. Monogr. (1998), Second edition. MR 1702941
Partner of
EuDML logo