Previous |  Up |  Next

Article

Keywords:
oscillation; third order; functional differential equation
Summary:
In this paper we are concerned with the oscillation of third order nonlinear delay differential equations of the form \[ \ \left( r_{2}\left( t\right) \left( r_{1}\left( t\right) x^{\prime }\right) ^{\prime }\right) ^{\prime }+p\left( t\right) x^{\prime }+q\left( t\right) f\left( x\left( g\left( t\right) \right) \right) =0. \] We establish some new sufficient conditions which insure that every solution of this equation either oscillates or converges to zero.
References:
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer, Dordrecht, 2000. MR 1774732
[2] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Dynamic Equations. Taylor & Francis, London, 2003. MR 1965832 | Zbl 1043.34032
[3] Agarwal, R. P., Grace, S. R., Wong, P. J. Y., : Oscillation of certain third order nonlinear functional differential equations. Adv. Dyn. Syst. Appl. 2 (1) (2007), 13–30. MR 2358775 | Zbl 1147.34048
[4] Aktas, M. F., Tiryaki, A.: Oscillation criteria of a certain class of third order nonlinear delay differential equations. Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 13–18 August 2007, edited by H. G. W. Begehr (Freie Universität Berlin, Germany), A. O. Çelebi (Yeditepe University, Turkey) and R. P. Gilbert (University of Delaware, USA), World Scientific 2009, 507-514. MR 2581652 | Zbl 1110.34048
[5] Aktas, M. F., Tiryaki, A., Zafer, A.: Oscillation criteria for third order nonlinear functional differential equations. preprint.
[6] Elias, U.: Generalizations of an inequality of Kiguradze. J. Math. Anal. Appl. 97 (1983), 277–290. DOI 10.1016/0022-247X(83)90251-2 | MR 0721243 | Zbl 0546.34010
[7] Erbe, L.: Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations. Ann. Mat. Pura Appl. (4) 110 (1976), 373–391. MR 0427738 | Zbl 0345.34023
[8] Erbe, L. H., Kong, Q., Zhong, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, Inc., New York, 1995. MR 1309905
[9] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 202 (1) (2008), 102–112. DOI 10.1016/j.amc.2008.01.025 | MR 2437140 | Zbl 1154.34368
[10] Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations With Applications. Clarendon Press, Oxford, 1991. MR 1168471
[11] Parhi, N., Das, P.: Oscillatory and asymptotic behavior of a class of nonlinear functional differential equations of third order. Bull. Calcutta Math. Soc. 86 (1994), 253–266. MR 1326218
[12] Philos, Ch. G.: On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays. Arch. Math. (Basel) 36 (1981), 168–178. DOI 10.1007/BF01223686 | MR 0619435
[13] Philos, Ch. G., Sficas, Y. G.: Oscillatory and asymptotic behavior of second and third order retarded differential equations. Czechoslovak Math. J. 32 (107) (1982), 169–182, With a loose Russian summary. MR 0654054 | Zbl 0507.34062
[14] Seman, J.: Oscillation theorems for second order delay inequalities. Math. Slovaca 39 (1989), 313–322. MR 1016348
[15] Skerlik, A.: Oscillation theorems for third order nonlinear differential equations. Math. Slovaca 42 (1992), 471–484. MR 1195041 | Zbl 0760.34031
[16] Swanson, C A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, 1968. MR 0463570 | Zbl 0191.09904
[17] Tiryaki, A., Aktas, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping. J. Math. Anal. Appl. 325 (2007), 54–68. DOI 10.1016/j.jmaa.2006.01.001 | MR 2273028 | Zbl 1110.34048
[18] Tiryaki, A., Yaman, Ş.: Oscillatory behavior of a class of nonlinear differential equations of third order. Acta Math. Sci. 21B (2) (2001), 182–188.
Partner of
EuDML logo