Article
Summary:
We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space.
References:
[1] R. M. Range:
Holomorphic Functions and Integral Representations in Several Complex Variables. Springer-Verlag, 1986.
MR 0847923 |
Zbl 0591.32002
[3] K. Zhu:
A sharp norm estimate of the Bergman projection.
Zbl 1105.32006