[1] R. Cignoli, I. D. D’Ottaviano, and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[2] A. De Simone, D. Mundici, and M. Navara:
A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. Czechoslovak Math. J. 53 (2003), 437–447.
DOI 10.1023/A:1026299723322 |
MR 1983464
[3] A. De Simone, M. Navara, and P. Pták:
On interval homogeneous orthomodular lattices. Commentat. Math. Univ. Carolinae 42 (2001), 23–30.
MR 1825370
[6] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. Proc. Fourth Int. Symp. Econ. Informatics, Bucharest, 1999, pp. 961–968.
MR 1730100
[7] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras. Multiple-valued Logics 6 (2001), 95–135.
MR 1817439
[8] J. Hashimoto:
On the product decomposition of partially ordered sets. Math. Jap. 1 (1948), 120–123.
MR 0030502 |
Zbl 0041.37801
[9] J. Jakubík: Direct product decompositions of partially ordered groups. Czechoslovak Math. J. 10 (1960), 231–243. (Russian)
[10] J. Jakubík:
Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175.
MR 0297666
[11] J. Jakubík, M. Csontóová:
Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–378.
MR 1251882
[12] J. Jakubík:
Complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221–230.
MR 1388611
[13] J. Jakubík:
Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49–56.
MR 1632739
[15] J. Jakubík:
Direct product decompositions of infinitely distributive lattices. Math. Bohemica 125 (2000), 341–354.
MR 1790125
[16] J. Jakubík:
Convex mappings of archimedean $MV$-algebras. Math. Slovaca 51 (2001), 383–391.
MR 1864107
[17] J. Jakubík:
Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2002), 131–142.
MR 1838410
[18] J. Jakubík:
Cantor-Bernstein theorem for lattices. Math. Bohem. 127 (2002), 463–471.
MR 1931330
[19] J. Jakubík:
A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Tatra Mt. Math. Publ. 22 (2002), 91–103.
MR 1889037
[20] G. Jenča:
A Cantor-Bernstein type theorem for effect algebras. Algebra Univers. 48 (2002), 399–411.
MR 1967089
[21] A. G. Kurosh: Group Theory. Nauka, Moskva, 1953. (Russian)