Article
Keywords:
Brauer group; Brauer-Wall group; Witt equivalence
Summary:
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
References:
[1] A. Czogała:
Równowa.zność Hilberta ciał globalnych. Volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001.
MR 1852938
[2] M. Knebusch:
On algebraic curves over real closed fields. II. Math. Z. 151 (1976), 189–205.
MR 0441979 |
Zbl 0328.14012
[5] P. Koprowski:
Integral equivalence of real algebraic function fields. Tatra Mt. Math. Publ. 32 (2005), 53–61.
MR 2206911 |
Zbl 1150.11420
[6] T. Y. Lam:
Introduction to quadratic forms over fields. Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.
MR 2104929 |
Zbl 1068.11023
[7] R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland:
Matching Witts with global fields. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994.
MR 1260721
[10] K. Szymiczek:
Hilbert-symbol equivalence of number fields. Tatra Mt. Math. Publ. 11 (1997), 7–16.
MR 1475500 |
Zbl 0978.11012
[11] K. Szymiczek:
A characterization of tame Hilbert-symbol equivalence. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 191–201.
MR 1822530 |
Zbl 1024.11022