Previous |  Up |  Next

Article

Keywords:
Brauer group; Brauer-Wall group; Witt equivalence
Summary:
We present criteria for a pair of maps to constitute a quaternion-symbol equivalence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed in terms of vanishing of the Clifford invariant. In principle, we prove that a local condition of a quaternion-symbol equivalence can be transcribed from the Brauer group to the Brauer-Wall group.
References:
[1] A. Czogała: Równowa.zność Hilberta ciał globalnych. Volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. MR 1852938
[2] M. Knebusch: On algebraic curves over real closed fields. II. Math. Z. 151 (1976), 189–205. MR 0441979 | Zbl 0328.14012
[3] P. Koprowski: Local-global principle for Witt equivalence of function fields over global fields. Colloq. Math. 91 (2002), 293–302. DOI 10.4064/cm91-2-8 | MR 1898636 | Zbl 1030.11017
[4] P. Koprowski: Witt equivalence of algebraic function fields over real closed fields. Math. Z. 242 (2002), 323–345. DOI 10.1007/s002090100336 | MR 1980626 | Zbl 1067.11020
[5] P. Koprowski: Integral equivalence of real algebraic function fields. Tatra Mt. Math. Publ. 32 (2005), 53–61. MR 2206911 | Zbl 1150.11420
[6] T. Y. Lam: Introduction to quadratic forms over fields. Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. MR 2104929 | Zbl 1068.11023
[7] R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland: Matching Witts with global fields. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. MR 1260721
[8] K. Szymiczek: Matching Witts locally and globally. Math. Slovaca 41 (1991), 315–330. MR 1126669 | Zbl 0766.11023
[9] K. Szymiczek: Witt equivalence of global fields. Comm. Algebra 19 (1991), 1125–1149. DOI 10.1080/00927879108824194 | MR 1102331 | Zbl 0724.11020
[10] K. Szymiczek: Hilbert-symbol equivalence of number fields. Tatra Mt. Math. Publ. 11 (1997), 7–16. MR 1475500 | Zbl 0978.11012
[11] K. Szymiczek: A characterization of tame Hilbert-symbol equivalence. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 191–201. MR 1822530 | Zbl 1024.11022
Partner of
EuDML logo