Previous |  Up |  Next

Article

Keywords:
multiplier; orbit; hypercyclic vector; multiplication operator; weighted composition operator
Summary:
In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.
References:
[1] J.  Bes: Three problems on hypercyclic operators. PhD. Thesis, Kent State University, 1998.
[2] J.  Bes, A. Peris: Hereditarily hypercyclic operators. J.  Funct. Anal. 167 (1999), 94–112. DOI 10.1006/jfan.1999.3437 | MR 1710637
[3] P. S. Bourdon: Orbits of hyponormal operators. Mich. Math. J. 44 (1997), 345–353. DOI 10.1307/mmj/1029005709 | MR 1460419 | Zbl 0896.47020
[4] P. S. Bourdon, J. H.  Shapiro: Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc.  125. Am. Math. Soc., Providence, 1997. MR 1396955
[5] P. S.  Bourdon, J.  H.  Shapiro: Hypercyclic operators that commute with the Bergman backward shift. Trans. Am. Math. Soc 352 (2000), 5293–5316. DOI 10.1090/S0002-9947-00-02648-9 | MR 1778507
[6] R. M.  Gethner, J. H. Shapiro: Universal vectors for operators on spaces of holomorphic functions. Proc. Am. Math. Soc. 100 (1987), 281–288. DOI 10.1090/S0002-9939-1987-0884467-4 | MR 0884467
[7] G.  Godefroy, J. H.  Shapiro: Operators with dense, invariant cyclic vector manifolds. J. Funct. Anal. 98 (1991), 229–269. DOI 10.1016/0022-1236(91)90078-J | MR 1111569
[8] K.  Goswin, G.  Erdmann: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 35 (1999), 345–381. MR 1685272
[9] D. A. Herrero: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991), 179–190. DOI 10.1016/0022-1236(91)90058-D | MR 1120920 | Zbl 0758.47016
[10] C.  Kitai: Invariant closed sets for linear operators. Thesis, University of Toronto, Toronto, 1982.
[11] C. Read: The invariant subspace problem for a class of Banach spaces. 2. Hypercyclic operators. Isr. J.  Math. 63 (1988), 1–40. DOI 10.1007/BF02765019 | MR 0959046
[12] S.  Rolewicz: On orbits of elements. Stud. Math. 32 (1969), 17–22. DOI 10.4064/sm-32-1-17-22 | MR 0241956 | Zbl 0174.44203
[13] H. N.  Salas: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347 (1995), 993–1004. DOI 10.1090/S0002-9947-1995-1249890-6 | MR 1249890 | Zbl 0822.47030
[14] A. L.  Shields, L. J.  Wallen: The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1971), 777–788. DOI 10.1512/iumj.1971.20.20062 | MR 0287352
[15] B.  Yousefi, H.  Rezaei: Hypercyclicity on the algebra of Hilbert-Schmidt operators. Result. Math. 46 (2004), 174–180. DOI 10.1007/BF03322879 | MR 2093472
[16] B.  Yousefi, H.  Rezaei: Some necessary and sufficient conditions for Hypercyclicity Criterion. Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. DOI 10.1007/BF02829627 | MR 2142466
Partner of
EuDML logo