[1] J. Appell, P. P. Zabreĭko:
Nonlinear Superposition Operators. Cambridge University Press, Cambridge, 1990.
MR 1066204
[2] M. Başarir:
On some new sequence spaces and related matrix transformations. Indian J. Pure Appl. Math. 26 (1995), 1003–1010.
MR 1364093
[3] F. Dedagich, P. P. Zabreĭko:
On superposition operators in $\ell _{p}$ spaces. Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian)
MR 0886856
[5] Mushir A. Khan, Qamaruddin:
Some generalized sequence spaces and related matrix transformations. Far East J. Math. Sci. 5 (1997), 243–252.
MR 1465589
[6] E. Kolk:
Inclusion theorems for some sequence spaces defined by a sequence of moduli. Tartu Ül. Toimetised 960 (1994), 65–72.
MR 1337906
[7] E. Kolk:
$F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability. Indian J. Pure Appl. Math. 28 (1997), 1447–1566.
MR 1608597 |
Zbl 0920.46002
[8] E. Kolk:
Superposition operators on sequence spaces defined by $\varphi ~ $-functions. Demonstr. Math. 37 (2004), 159–175.
MR 2053112 |
Zbl 1086.47033
[9] Y. Luh:
Die Räume $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$. Mitt. Math Sem. Giessen 180 (1987), 35–37.
MR 0922437
[12] S. Petrantuarat, Y. Kemprasit:
Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$. Southeast Asian Bull. Math. 21 (1997), 139–147.
MR 1682993
[13] R. Płuciennik:
Continuity of superposition operators on $w_{0}$ and $W_{0}$. Commentat. Math. Univ. Carol. 31 (1990), 529–542.
MR 1078487
[14] J. Robert:
Continuité d’un opérateur non linéaire sur certains espaces de suites. C. R. Acad. Sci., Paris 259 (1964), 1287–1290.
MR 0166602 |
Zbl 0196.44602
[16] A. Sama-ae: Boundedness and continuity of superposition operator on $E_{r}(p)$ and $F_{r}(p)$. Songklanakarin J. Sci. Technol. 24 (2002), 451–466.
[17] V. Soomer:
On the sequence space defined by a sequence of moduli and on the rate-space. Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74.
MR 1711648
[18] S. Suantai:
Boundedness of superposition operators on $E_{r}$ and $F_{r}$. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259.
MR 1608173 |
Zbl 0904.47066