Previous |  Up |  Next

Article

Keywords:
sequence space; superposition operator; modulus function; continuity
Summary:
Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$ $(k \in \mathbb{N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.
References:
[1] J.  Appell, P. P.  Zabreĭko: Nonlinear Superposition Operators. Cambridge University Press, Cambridge, 1990. MR 1066204
[2] M.  Başarir: On some new sequence spaces and related matrix transformations. Indian J.  Pure Appl. Math. 26 (1995), 1003–1010. MR 1364093
[3] F.  Dedagich, P. P.  Zabreĭko: On superposition operators in $\ell _{p}$  spaces. Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) MR 0886856
[4] K.-G.  Grosse-Erdmann: The structure of the sequence spaces of Maddox. Can. J.  Math. 44 (1992), 298–302. DOI 10.4153/CJM-1992-020-2 | MR 1162345 | Zbl 0777.46008
[5] Mushir A.  Khan, Qamaruddin: Some generalized sequence spaces and related matrix transformations. Far East J.  Math. Sci. 5 (1997), 243–252. MR 1465589
[6] E.  Kolk: Inclusion theorems for some sequence spaces defined by a sequence of moduli. Tartu Ül.  Toimetised 960 (1994), 65–72. MR 1337906
[7] E.  Kolk: $F$-seminormed sequence spaces defined by a sequence of modulus functions and strong summability. Indian J.  Pure Appl. Math. 28 (1997), 1447–1566. MR 1608597 | Zbl 0920.46002
[8] E.  Kolk: Superposition operators on sequence spaces defined by  $\varphi ~ $-functions. Demonstr. Math. 37 (2004), 159–175. MR 2053112 | Zbl 1086.47033
[9] Y.  Luh: Die Räume  $\ell (p)$, $\ell _\infty (p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ and $w_\infty (p)$. Mitt. Math Sem. Giessen 180 (1987), 35–37. MR 0922437
[10] I. J.  Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. DOI 10.1017/S0305004100065968 | MR 0838663 | Zbl 0631.46010
[11] I. J.  Maddox: Inclusions between FK spaces and Kuttner’s theorem. Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. DOI 10.1017/S0305004100066883 | MR 0878899 | Zbl 0631.46009
[12] S.  Petrantuarat, Y.  Kemprasit: Superposition operators of $\ell _{p}$ and $c_{0}$ into $\ell _{q}$ $(1\le p, q < \infty )$. Southeast Asian Bull. Math. 21 (1997), 139–147. MR 1682993
[13] R.  Płuciennik: Continuity of superposition operators on  $w_{0}$ and $W_{0}$. Commentat. Math. Univ. Carol. 31 (1990), 529–542. MR 1078487
[14] J.  Robert: Continuité d’un opérateur non linéaire sur certains espaces de suites. C.  R.  Acad. Sci., Paris 259 (1964), 1287–1290. MR 0166602 | Zbl 0196.44602
[15] W. H.  Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Can. J.  Math. 25 (1973), 973–978. DOI 10.4153/CJM-1973-102-9 | MR 0338731 | Zbl 0267.46008
[16] A.  Sama-ae: Boundedness and continuity of superposition operator on  $E_{r}(p)$ and $F_{r}(p)$. Songklanakarin J.  Sci. Technol. 24 (2002), 451–466.
[17] V.  Soomer: On the sequence space defined by a sequence of moduli and on the rate-space. Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. MR 1711648
[18] S.  Suantai: Boundedness of superposition operators on  $E_{r}$ and $F_{r}$. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. MR 1608173 | Zbl 0904.47066
Partner of
EuDML logo