Article
Keywords:
$C_1$-class; generalized $p$-symmetric operator; Anderson Inequality
Summary:
Let $\Cal H$ be a separable infinite dimensional complex Hilbert space, and let $\Cal L(\Cal H)$ denote the algebra of all bounded linear operators on $\Cal H$ into itself. Let $A=(A_{1},A_{2},\dots ,A_{n})$, $B=(B_{1},B_{2},\dots ,B_{n})$ be $n$-tuples of operators in $\Cal L(\Cal H)$; we define the elementary operators $\Delta_{A,B}\:\Cal L(\Cal H)\mapsto\Cal L(\Cal H)$ by $\Delta_{A,B}(X)=\sum_{i=1}^nA_iXB_i-X.$ In this paper, we characterize the class of pairs of operators $A,B\in\Cal L(\Cal H)$ satisfying Putnam-Fuglede’s property, i.e, the class of pairs of operators $A,B\in\Cal L(\Cal H)$ such that $\sum_{i=1}^nB_iTA_i=T$ implies $\sum_{i=1}^nA_i^*TB_i^*=T$ for all $T\in\Cal C_1(\Cal H)$ (trace class operators). The main result is the equivalence between this property and the fact that the ultraweak closure of the range of the elementary operator $\Delta_{A,B}$ is closed under taking adjoints. This leads us to give a new characterization of the orthogonality (in the sense of Birkhoff) of the range of an elementary operator and its kernel in $C_1$ classes.
References:
[2] J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams:
C$^{*}$ algebras and derivation ranges. Acta Sci. Math. 40 (1978), 211–227.
MR 0515202
[3] S. Bouali, J. Charles:
Extension de la notion d’opérateur D-symétique I. Acta Sci. Math. 58 (1993), 517–525. (French)
MR 1264254
[4] S. Mecheri:
Generalized P-symmetric operators. Proc. Roy. Irish Acad. 104A (2004), 173–175.
MR 2140424
[5] S. Mecheri, M. Bounkhel:
Some variants of Anderson’s inequality in $C_{1}$-classes. JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), 1–6.
MR 1966004
[7] V. S. Shulman:
On linear equation with normal coefficient. Dokl. Akad. Nauk USSR 2705 (1983), 1070–1073. (Russian)
MR 0714059