Article
Keywords:
countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
Summary:
If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
References:
[1] J. Bourgain:
An averaging result for $c_{0}$-sequences. Bull. Soc. Math. Belg., Sér. B 30 (1978), 83–87.
MR 0549653 |
Zbl 0417.46019
[2] P. Cembranos, J. Mendoza:
Banach Spaces of Vector-Valued Functions. Lecture Notes in Mathematics Vol. 1676. Springer-Verlag, Berlin, 1997.
MR 1489231
[3] J. Diestel:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer-Verlag, New York-Heidelberg-Berlin, 1984.
MR 0737004
[4] J. Diestel, J. Uhl:
Vector Measures. Mathematical Surveys, No 15. Am. Math. Soc., Providence, 1977.
MR 0453964
[7] P. Habala, P. Hájek, and V. Zizler: Introduction to Banach Space. Matfyzpress, Prague, 1996.
[8] E. Hewitt, K. Stromberg:
Real and Abstract Analysis. Graduate Texts in Mathematics 25. Springer-Verlag, New York-Heidelberg-Berlin, 1975.
MR 0367121
[10] E. Saab, P. Saab:
On complemented copies of $c_{0} $ in injective tensor products. Contemp. Math. 52 (1986), 131–135.
DOI 10.1090/conm/052/840704
[11] M. Talagrand:
Quand l’espace des mesures a variation bornée est-it faiblement sequentiellement complet. Proc. Am. Math. Soc. 90 (1984), 285–288. (French)
MR 0727251