[2] H. Alencar, M. do Carmo, and W. Santos:
A gap theorem for hypersurfaces of the sphere with constant scalar curvature one. Comment. Math. Helv. 77 (2002), 549–562.
DOI 10.1007/s00014-002-8351-1 |
MR 1933789
[4] S. S. Chern, M. do Carmo, and S. Kobayashi:
Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields, F. Browder (ed.), Springer-Verlag, Berlin, 1970, pp. 59–75.
MR 0273546
[5] M. P. do Carmo: Riemannian Geometry. Bikhäuser-Verlag, Boston, 1993.
[8] P. Hartman, L. Nirenberg:
On spherical image maps whose Jacobians do not change sign. Amer. J. Math. 81 (1959), 901–920.
DOI 10.2307/2372995 |
MR 0126812
[10] W. S. Massey:
Algebraic Topology: An Introduction. 4th corr. print. Graduate Texts in Mathematics Vol. 56. Springer-Verlag, New York-Heidelberg-Berlin, 1967.
MR 0211390
[11] S. Montiel, A. Ros:
Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry. Pitman Monographs. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991, pp. 279–296.
MR 1173047
[13] C. K. Peng, C. L. Terng:
Minimal hypersurfaces of spheres with constant scalar curvature. Ann. Math. Stud. 103 (1983), 177–198.
MR 0795235
[16] A. Ros:
Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamericana 3 (1987), 447–453.
MR 0996826 |
Zbl 0673.53003