Previous |  Up |  Next

Article

Keywords:
$\ell _p$ space; injective and projective tensor product
Summary:
We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$.
References:
[1] J. Bourgain: New classes of ${L}_p$-spaces. Lecture Notes in Math. vol. 889, Springer, Berlin, 1981. MR 0639014
[2] J. Bourgain: New Banach space properties of the disc algebra and $H^\infty $. Acta Math. 152 (1984), 1–48. DOI 10.1007/BF02392189 | MR 0736210
[3] F. Cabello, D. Pérez-García and I. Villanueva: Unexpected subspaces of tensor products. J. London Math. Soc. 74 (2006), 512–526. MR 2269592
[4] J. M. F. Castillo: On Banach spaces $X$ such that ${\mathcal{L}}(L_p,X)={\mathcal{K}}(L_p,X)$. Extracta Math. 10 (1995), 27–36. MR 1359589
[5] A. Defant and K. Floret: Tensor Norms and Operator Ideals. Math. Studies 176, North-Holland, Amsterdam, 1993. MR 1209438
[6] J. Diestel: A survey of results related to the Dunford-Pettis property. In: W. H. Graves (ed.), Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Chapel Hill 1979, Contemp. Math. 2, 15–60, American Mathematical Society, Providence RI, 1980. MR 0621850 | Zbl 0571.46013
[7] J. Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Math. 92, Springer, Berlin, 1984. MR 0737004
[8] J. Diestel, H. Jarchow and A. Tonge: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995. MR 1342297
[9] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. MR 0453964
[10] E. Dubinsky, A. Pełczyński and H. P. Rosenthal: On Banach spaces $X$ for which $\Pi _2({L}_\infty ,X)=B({L}_\infty ,X)$. Studia Math. 44 (1972), 617–648. MR 0365097
[11] M. González and J. M. Gutiérrez: The Dunford-Pettis property on tensor products. Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. MR 1833082
[12] J. M. Gutiérrez: Complemented copies of $\ell _2$ in spaces of integral operators. Glasgow Math. J. 47 (2005), 287–290. DOI 10.1017/S0017089505002491 | MR 2203495
[13] J. Lindenstrauss and A. Pełczyński: Absolutely summing operators in ${L}_p$-spaces and their applications. Studia Math. 29 (1968), 275–326. DOI 10.4064/sm-29-3-275-326 | MR 0231188
[14] J. Lindenstrauss and H. P. Rosenthal: The ${L}_p$-spaces. Israel J. Math. 7 (1969), 325–349. MR 0270119
[15] F. Lust: Produits tensoriels injectifs d’espaces de Sidon. Colloq. Math. 32 (1975), 285–289. DOI 10.4064/cm-32-2-285-289 | MR 0390794 | Zbl 0306.46026
[16] H. P. Rosenthal: Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), 362–378. DOI 10.2307/2373824 | MR 0438113 | Zbl 0392.54009
[17] R. A. Ryan: The Dunford-Pettis property and projective tensor products. Bull. Polish Acad. Sci. Math. 35 (1987), 785–792. MR 0961717 | Zbl 0656.46057
[18] M. Talagrand: Cotype of operators from $C(K)$. Invent. Math. 107 (1992), 1–40. DOI 10.1007/BF01231879 | MR 1135462 | Zbl 0788.47022
Partner of
EuDML logo