[1] J. P. Aubin and H. Frankowska:
Set-valued Analysis. Birkhäuser, Boston, 1990.
MR 1048347
[2] J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo:
Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory. Birkhauser-Verlag, Basel 99, 1997.
MR 1483889
[3] K. Deimling:
Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1974.
MR 0787404
[4] T. Domínguez Benavides and P. Lorenzo Ramírez:
Fixed point theorem for multivalued nonexpansive mapping without uniform convexity. Abstr. Appl. Anal. 6 (2003), 375–386.
DOI 10.1155/S1085337503203080 |
MR 1982809
[5] T. Domínguez Benavides and P. Lorenzo Ramírez:
Fixed point theorem for multivalued nonexpansive mapping satisfying inwardness conditions. J. Math. Anal. Appl. 291 (2004), 100–108.
DOI 10.1016/j.jmaa.2003.10.019 |
MR 2034060
[7] K. Goebel and W. A. Kirk:
Topics in metric fixed point theorem. Cambridge University Press, Cambridge, 1990.
MR 1074005
[9] W. A. Kirk:
Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity. Proceedings of the Symposium Pure Mathematics, Vol. 45, part 2, American Mathematical Society, Providence, 1986, pp. 51–64.
MR 0843594 |
Zbl 0594.47048
[12] N. Shahzad and S. Latif:
Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl. 237 (1999), 83–92.
DOI 10.1006/jmaa.1999.6454 |
MR 1708163
[13] K.-K. Tan and X. Z. Yuan:
Some random fixed point theorems. Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345.
MR 1190049
[16] H. K. Xu:
Metric fixed point for multivalued mappings. Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39.
MR 1799531