Article
Keywords:
$\scr {L}\Im $-space; foncteur; catégorie abélienne
Summary:
We construct the category of quotients of $\mathcal {L}\Im $-spaces and we show that it is Abelian. This answers a question of L. Waelbroeck from 1990.
References:
[1] H. Hogbe Nlend:
Théorie des Bornologies et Applications. Lect. Notes Math. Vol. 213. Springer-Verlag, Berlin-Heidelberg-New York, 1971. (French)
MR 0625157
[2] A. Grothendieck:
Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Amer. Math. Soc. No. 16. AMS, Providence, 1966.
MR 1609222
[3] L. Waelbroeck:
Topological Vector Spaces and Algebras. Lect. Notes Math. Vol. 230. Springer-Verlag, Berlin-Heidelberg-New York, 1971.
MR 0467234
[4] L. Waelbroeck:
Quotient Banach Spaces, Spectral theory 8. Banach Cent. Publ., Warsaw, 1982, pp. 553–562.
MR 0738315
[5] L. Waelbroeck:
Holomorphic functions taking their values in a quotient bornological space. Linear operators in function spaces. Proc. 12th Int. Conf. Oper. Theory, Timisoara, Rommania, 1988. Oper. Theory, Adv. Appl. 43 (1990), 323–335.
MR 1090139